• Title/Summary/Keyword: 이온전도성

Search Result 488, Processing Time 0.023 seconds

Interactions and Ionic Conductivities of Poly(epichlorohydrin) Graft Copolymer Electrolyte Membranes (Poly(epichlorohydrin) 가지형 공중합체 전해질막의 상호작용 및 이온 전도도)

  • Koh, Joo-Hwan;Lee, Kyung-Ju;Park, Jung-Tae;Ahn, Sung-Hoon;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.203-209
    • /
    • 2010
  • Amphiphilic graft copolymers based on poly(epichlorohydrine) (PECH) were synthesized using atom transfer radical polymerization (ATRP). Successful graft polymerization of poly(methyl methacrylate)(PMMA) and poly(butyl methacrylate) (PBMA) from PECH was confirmed by nuclear magnetic resonance ($^1H$ NMR) and FT-IR spectroscopy. Upon the introduction of KI or LiI to the graft copolymers, the ether stretching bands were shifted to a lower wavenumber due to coordinative interactions. Ionic conductivities of PECH-g-PBMA complexes were always higher than those of PECH-g-PMMA complexes, resulting from higher mobility of rubbery PBMA chains. The maximum ionic conductivity of $2.7{\times}10^{-5}\;S/cm$ was obtained at 10 wt% of KI for PECH-g-PBMA electrolytes.

Mixed Ionic and Electronic Conductivity of Lanthanum Sesquioxide (산화란타늄의 이온 및 전자전도도)

  • Keu Hong Kim;Chang Kwon Kang;Jong Hwan Lee;Jae Shi Choi
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.301-307
    • /
    • 1987
  • The electrical conductivity of highly pure polycrystalline sample of $La_2O_3$ has been measured at temperatures from $600^{\circ}C$ to $1,050^{\circ}C$ and oxygen pressure range of $1{\times}10^{-6}$ torr to $1{\times}10^2$ torr. The defect structure and semiconductor type are investigated by measuring the temperature and oxygen pressure dependences of electrical conductivity. Sintered $La_2O_3$ exhibits the electrical conductivities in the range of $1{\times}10^{-9}\;to\;1{\times}10^{-3}\;ohm^{-1}{\cdot}cm^{-1}$ under the above oxygen pressures. The oxygen pressure dependences on electrical conductivity are characterized by 5.3 at $1,000^{\circ}C$ and 5.7 at $700^{\circ}C$ and more higher values of 9∼14 below $700^{\circ}C$. The increase in n value with decreasing temperature indicates that a simple conduction mechanism does not exist in this material. The conduction carriers are not metal vacancy but oxygen ion at lower pressures. The conduction data indicate a significant ionic conduction at lower temperatures and electronic conduction at higher temperatures.

  • PDF

Preparation and Actuation Performance of Ionic Polymer-Metal Composite Actuators Based on Nafion-Alumina Composite Membranes (나피온-알루미나 복합막을 사용한 이온성 폴리머-금속 복합체 작동기의 제작 및 성능 평가)

  • Lee, Jang-Woo;Kim, Woo-Sung;Yoo, Young-Tai
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.377-383
    • /
    • 2009
  • Ionic polymer-metal composite (IPMC) actuator generates bending actuation via ion/water flux to the cathode side under an electric field. Polyelectrolytes in IPMC should possess high water-retention capability, proton conductivity, and Young's modulus. In this study. for endowing IPMCs with these properties, Nafion-alumina composite membranes containing $\alpha$- or $\gamma$-aluminas of $4{\sim}8$ wt% were prepared. Mechanical moduli of Nafion-alumina composite membranes were $7{\sim}3$ MPa higher than that of Nafion, with the slight decrease in proton conductivity. At DC 3 V. the actuation performance of the Nafion-$\alpha$-alumina (8 wt%)-IPMC was superior to that of the typical Nafion-IPMC. exhibiting 2.7 times the displacement with an enhanced blocking force. The enhanced actuation performance with the Nafion-$\alpha$-alumina composite membranes was attributed to the higher proton conductivity, the elevated ion/water flux, and the lower interfacial electric resistance of platinum electrodes and membrane, compared with those containing $\gamma$-alumina.

A Study for the Increased Reliability of Al-1%Si Thin Film Metallizations (Al-1%Si 박막 금속화의 신뢰도 향상을 위한 연구)

  • 최재승;김진영
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.3
    • /
    • pp.382-388
    • /
    • 1992
  • Electromigration은 인가된 전계하에서 발생하는 전자풍력에 의한 금속 이온의 현 상이며, 반도체 디바이스의 주요 결함 원인으로 보고되어 왔다. 선폭 1$mu extrm{m}$의 Al-1%Si 금속 박막전도체에 대한 electromigration 수명 실험을 위해 인가된 d.c. 전류밀도는 10MA/cm2 이었고, electromigration에 대한 활성화 에너지 측정을 위한 분위기 온도는 $80^{\circ}C$, 10$0^{\circ}C$ 그리고 $120^{\circ}C$이었다. 평균수명 및 신뢰성에 대한 보호 절연막 효과를 위해 두께 3000 $\AA$의 SiO2 산화막을 sputtering 진공증착기를 사용하여 Al-1%Si 금속 박막 전도체 위에 증착하였 다. 주요 연구 결과는 다음과 같다. Al-1%Si 금속 박막 전도체의 electromigration에 대한 활성화 에너지값은 0.75eV이었고 온도가 증가함에 따라 Al-1%Si의 수명은 감소하였고 신 뢰성은 향상되었다. SiO2 보호막은 electromigration에 대한 저항성을 크게 함으로써 평균수 명을 향상시켰으며, electromigration failure는 lognormal failure distribution은 갖는 것으로 나타났다.

  • PDF

The Properties of Electrical Conduction and Photoconduction in Polyphenylene Sulfide(PPS) by Uniaxial Elongation (일축연신에 따른 Polyphenylene sulfide(PPS)의 전기전도 및 광전도 특성)

  • 이운용;장동욱;강성화;임기조;류부형
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.223-226
    • /
    • 1998
  • In this paper, we have investigated how morphology and electrical properties in Polyphenylene sulfide(PPS) are changed by uniaxial elongation. XRD pattern shows that interplanar distance and crystallinities are decreased by increasing elongation ratio. Electrical conduction mechanism of PPS is explained as schottky emission from analysis of electrical current. The electrical current is decreased by increasing elongation ratio. The conductivity is changed remarkably above the glass transition temperature around $(82^{\circ}C)$. The band gap of PPS is evaluated as 3.9-4(eV) from the results of photoconductivity. Increarnent of elongation ratio gives us some information about deep trap formation from photocurrent.

  • PDF

Phase Formation and Proton Conduction of La0.6Ba0.4In1-yMyO3-δ(M=Ga3+ , Sc3+, Yb3+) System (La0.6Ba0.4In1-yMyO3-δ(M=Ga3+ , Sc3+, Yb3+)계 조성의 상생성과 Proton 전도)

  • Kim, Hye-Lim;Kim, Shin;Lee, Hong-Lim
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.610-615
    • /
    • 2002
  • Phase formation and proton conduction of L $a_{0.6}$B $a_{0.4}$I $n_{1-y}$ $M_{y}$ $O_{3-{\delta}}$(M=G $a^{3+}$, S $c^{3+}$, Y $b^{3+}$) system were studied. A cubic perovskite structure with a single phase was formed in all of the compositions of this work except for the composition off=G $a^{3+}$ with y=0.5, viz,L $a_{0.6}$B $a_{0.4}$I $n_{1-y}$G $a_{0.5}$ $O_{3-{\delta}}$ For the compositions of M=S $c^{3+}$and Y $b^{3+}$with y=0.25, proton conduction occurred in wet $N_2$ atmosphere(P $h_{H_2O}$=6.1hPa).X>/=6.1hPa).Pa).

Study on Ionic Conductivity and Crystallinity of PEO/PMMA Polymer Composite Electrolytes containing $TiO_2$ Filler ($TiO_2$ 필러를 포함하는 PEO/PMMA 고분자 복합체 전해질의 이온전도도 및 결정화도)

  • Lee, Lyun-Gyu;Park, Soo-Jin;Kim, Seok
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.758-763
    • /
    • 2011
  • In this work, polymer composite electrolytes were prepared by a blend of poly(methyl methacrylate) (PMMA) and poly(ethylene oxide) (PEO) as a polymer matrix, propylene carbonate as a plasticizer, $LiClO_4$ as a salt, and by containing a different content of $TiO_2$, by using the solution casting method. The crystallinity and ionic conductivity of the polymer electrolytes was evaluated using X-ray diffraction(XRD) and AC impedance method, respectively. The morphology of composite electrolyte film was analyzed by SEM method. From the experimental results, by increasing the $TiO_2$ content, crystallinity of PEO was reduced, and ionic conductivity was increased. In particular, the ionic conductivity was dependent on the content of $TiO_2$ and showed the highest value 15 wt%. However, when $TiO_2$ content exceeds 15 wt%, the ionic conductivity was decreased. According to the surface morphology, the ionic conductivity was decreased because the polymer composite electrolytes showed a heterogenous morphology of fillers due to immiscibility or aggregation of the filler within the polymer matrix.

Electromagnetic Susceptiblity Experiments for Battery Protection Circuit Module (배터리 보호회로 모듈에 대한 전자파 내성 실험)

  • Park, Kyung-Je;Yoo, Jong-Gyeong;Lee, Dae-Heon;Yeo, Junho;Cho, Young-Ki;Kim, Jong-Kyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.57-58
    • /
    • 2017
  • In this paper, we have studied electromagnetic susceptibility tests of the battery protection circuit module of a lithium ion battery. Electromagnetic susceptibility tests can be divided into conducted susceptibility for electromagnetic waves flowing through power lines, input / output lines, antenna ports, and radiated susceptibility for spatially radiated electromagnetic waves. A lithium ion battery of S company was used as an experimental sample, and conducted susceptibility tests were conducted on Surge (IEC 61000-4-5), Ring wave (IEC 61000-4-12), and Damped oscillatory wave(IEC 61000-4-18). Radiated susceptibility tests were performed according to IEC 61000-4-3.

  • PDF

Melanin: A Naturally Existing Multifunctional Material (자연계에 존재하는 다기능성 소재 : 멜라닌)

  • Eom, Taesik;Woo, Kyungbae;Shim, Bong Sup
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.115-122
    • /
    • 2016
  • Melanin is a common name used for a certain type of natural dark pigments existing in living organisms, particularly in human hair, eyes, and skin. The unique free radical scavenging effect of melanine could help protecting cells and tissues from harmful UV light. While their exact molecular structures in nature are not still well defined, their multifunctional properties including electrical and ionic conductivities, antioxidation, wet adhesion, and metal ion chelation, are highlighted for the potential applications in bioorganic electronics including biomedical sensors and devices. In this mini-review, we will discuss sources, synthesis methods, structures and multifunctional properties of melanin materials in addition to current research directions on a wide range of applications.