Interactions and Ionic Conductivities of Poly(epichlorohydrin) Graft Copolymer Electrolyte Membranes

Poly(epichlorohydrin) 가지형 공중합체 전해질막의 상호작용 및 이온 전도도

  • Koh, Joo-Hwan (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Kyung-Ju (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Jung-Tae (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Ahn, Sung-Hoon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong-Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 고주환 (연세대학교 화공생명공학과) ;
  • 이경주 (연세대학교 화공생명공학과) ;
  • 박정태 (연세대학교 화공생명공학과) ;
  • 안성훈 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2010.08.17
  • Accepted : 2010.09.08
  • Published : 2010.09.30

Abstract

Amphiphilic graft copolymers based on poly(epichlorohydrine) (PECH) were synthesized using atom transfer radical polymerization (ATRP). Successful graft polymerization of poly(methyl methacrylate)(PMMA) and poly(butyl methacrylate) (PBMA) from PECH was confirmed by nuclear magnetic resonance ($^1H$ NMR) and FT-IR spectroscopy. Upon the introduction of KI or LiI to the graft copolymers, the ether stretching bands were shifted to a lower wavenumber due to coordinative interactions. Ionic conductivities of PECH-g-PBMA complexes were always higher than those of PECH-g-PMMA complexes, resulting from higher mobility of rubbery PBMA chains. The maximum ionic conductivity of $2.7{\times}10^{-5}\;S/cm$ was obtained at 10 wt% of KI for PECH-g-PBMA electrolytes.

원자전달 라디칼 중합을 이용하여 poly(epichlorohydrine) (PECH)를 주사슬로 한 양친성 가지형 공중합체를 합성하였다. PECH로부터 poly(methyl methacrylate)(PMMA) 및 poly(butyl methacrylate)(PBMA)의 가지형 중합이 성공적임을 $^1H$ NMR과 FT-IR분석을 통해 확인하였다. 합성한 가지형 공중합체에 KI나 LiI 염을 도입하였을 때, ether 신축진동 피크가 낮은 wavenumber영역으로 이동하였으며, 이는 배위결합 상호작용 때문이다. PECH-g-PBMA 복합체의 이온 전도도는 PECH-g-PMMA 복합체에 비해 항상 높게 나타났는데, 이는 고무상인 PBMA 사슬의 높은 이동성으로부터 기인한 것으로 확인되었다. 최고 이온전도도 값은 질량비 10 wt%의 KI가 도입된 PECH-g-PBMA 전해질체에서 $2.7{\times}10^{-5}\;S/cm$로 나타났다.

Keywords

References

  1. N. Yoshimoto, O. Shimamura, T. Nishimura, M. Egashira, M. Nichioka, and M. Morita, "A novel polymeric electrolyte based on a copolymer containing self-assembled stearylate moiety for lithium- ion batteries", Electrochem. Commun., 11, 481 (2009). https://doi.org/10.1016/j.elecom.2008.12.030
  2. J. Reiter, O. Krejza, and M. Sedlarikova, "Electrochromic devices employing methacrylate-based polymer electrolytes", Sol. Energy Mater. Sol. Cells., 93, 249 (2009). https://doi.org/10.1016/j.solmat.2008.10.010
  3. B. L. Langsdorf, J. Sultan, and P. G. Pickup, "Partitioning and polymerization of pyrrole into perfluorosulfonate (Nafion) membranes under neutral conditions", J. Phys. Chem. B, 107, 8412 (2003). https://doi.org/10.1021/jp035210n
  4. H. Ko, J. Park, J. Choi, S. U. Kim, H. J. Kim, and Y. T. Hong, "Double-layered polymer electrolyte membrane based on sulfonated poly(aryl ether sulfone)s for direct methanol fuel cells", Membrane Journal, 19, 291 (2009).
  5. J. H. Kim, B. R. Min, J. Won, S. H. Joo, H. S. Kim, and Y. S. Kang, "Role of polymer matrix in polymer/silver complexes for structure, interactions, and facilitated olefin transport", Macromolecules, 36, 6183 (2003). https://doi.org/10.1021/ma034314t
  6. T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, and P. Falaras, "Binary polyethylene oxide/titania solid- state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells", Nano Lett., 2, 1259 (2002). https://doi.org/10.1021/nl025798u
  7. M.-J. Choi, C.-H. Shin, T. Kang, J.-K. Koo, and N. Cho, "A study on the organic/inorganic composite electrolyte membranes for dye sensitized solar cell", Membrane Journal, 18, 345 (2008).
  8. J. H. Koh,, K. J. Lee, J. A. Seo, and J. H. Kim, "Amphiphilic polymer electrolytes consisting of PVC-g-POEM comb-like copolymer and $LiCF_3SO_3$", J. Polym. Sci. B: Polym. Phys., 47, 1443 (2009). https://doi.org/10.1002/polb.21745
  9. S. Fuentes, P. Retuert, and G. Gonzalez, "Transparent conducting polymer electrolyte by addition of lithium to the molecular complex chitosanepoly(aminopropyl siloxane)", Electrochim. Acta, 48, 2015 (2003). https://doi.org/10.1016/S0013-4686(03)00180-4
  10. Y. Yoshimoto, H. Nomura, T. Shirai, M. Ishikawa, and M. Morita, "Ionic conductance of gel electrolyte using a polyurethane matrix for rechargeable lithium batteries", Electrochim. Acta, 50, 275 (2004). https://doi.org/10.1016/j.electacta.2004.01.128
  11. C. Y. Chiu, H. W. Chen, S. W. Kuo, C. F. Huang, and F. C. Chang, "Investigating the effect of miscibility on the ionic conductivity of LiClO4/PEO/ PCL ternary blends", Macromolecules, 37, 8424 (2003).
  12. Y. H. Liang, C. C. Wang, and C. Y. Chen, "Comblike copolymer-based gel polymer electrolytes for lithium ion conductors", J. Power Sources, 176, 340 (2008). https://doi.org/10.1016/j.jpowsour.2007.10.069
  13. D. Shanmukaraj, G. X. Wang, R. Murugan, and H. K. Liu, "Ionic conductivity and electrochemical stability of poly(methylmethacrylate)-poly(ethylene oxide) blend-ceramic fillers composites", J. Phys. Chem. Solids, 69, 243 (2008). https://doi.org/10.1016/j.jpcs.2007.08.072
  14. L. A. Guilherme, R. S. Borges, E. Mara, S. Moraes, G. Goulart Silva, M. A. Pimenta, A. Marletta, and R. A. Silva, "Ionic conductivity in polyethylene-bpoly( ethylene oxide)/lithium perchlorate solid polymer electrolytes", Electrochim. Acta, 53, 1503 (2007). https://doi.org/10.1016/j.electacta.2007.04.016
  15. D. K. Lee, K. J. Lee, Y. W. Kim, B. R. Min, and J. H. Kim, "Nanostructure, interactions, and conductivities of polymer electrolytes comprising silver salt and microphase-separated graft copolymer", J. Polym. Sci. B: Polym. Phys., 45, 1018 (2007). https://doi.org/10.1002/polb.21086
  16. P. P. Soo, B. Y. Huang, Y. I. Jang, Y. M. Chiang, D. R. Sadoway, and A. M. Mayes, "Rubbery block copolymer electrolytes for solid-state rechargeable batteries", Electrochem. Solid State Lett., 146, 32 (1999).
  17. P. E. Trapa, B. Y. Huang, Y. Y. Won, D. R. Sadoway, and A. M. Mayes, "Block copolymer electrolytes synthesized by atom transfer radical polymerization for solid-state, thin-film lithium batteries", Electrochem. Solid State Lett., 5, A85 (2002). https://doi.org/10.1149/1.1461996
  18. P. E. Trapa, Y. Y. Won, S. C. Mui, E. A. Olivetti, B. Y. Huang, D. R. Sadoway, A. M. Mayes, and S. Dallek, "Rubbery graft copolymer electrolytes for solid-state, thin-film lithium batteries", J. Electrochem. Soc., 152, A1 (2005). https://doi.org/10.1149/1.1824032
  19. J. T. Park, K. J. Lee, J. K. Koh, and J. H. Kim, "Role of grafted chains for the in-situ formation of Ag nanoparticles within poly(epichlorohydrin)-gpolymethacrylate films", Curr. Appl. Phys., 9, e298(2009). https://doi.org/10.1016/j.cap.2009.06.030
  20. J. H. Kim, B. R. Min, K. B. Lee, J. Won, and Y. S. Kang, "Coordination structure of various ligands in crosslinked PVA to silver ions for facilitated olefin transport", Chem. Commun., 2732 (2002).
  21. I. Cakmak and H. Baykara, "Synthesis of poly(epichlorohydrin- g-methyl methacrylate) graft copolymers by the combination of cationic and atom transfer radical polymerization", J. Appl. Polym. Sci., 102, 2725 (2006). https://doi.org/10.1002/app.24301
  22. D. J. Irvine, A. M. Mayes, and L. G. Griffith, "Nanoscale clustering of RGD peptides at surfaces using comb polymers. 1. synthesis and characterization of comb thin films", Biomacromolecules, 2, 85 (2001). https://doi.org/10.1021/bm005584b
  23. Z. Florjancczyka, E. Zygadlo-Monikowskaa, E. Rogalska-Jonsskaa, F. Krokb, J. R. Dygasb, and B. Misztal-Faraj, "Polymer electrolytes based on PEO and aluminum carboxylates", Solid State Ionics, 152-153, 227 (2002). https://doi.org/10.1016/S0167-2738(02)00303-X
  24. J.-L. Qiao, N. Yoshimoto, M. Ishikawa, and M. Morita, "Acetic acid-doped poly(ethylene oxide)- modified poly(methacrylate): a new proton conducting polymeric gel electrolyte", Electrochim. Acta, 47, 3441 (2002). https://doi.org/10.1016/S0013-4686(02)00280-3