• Title/Summary/Keyword: 이온성 액체 (ILs)

Search Result 23, Processing Time 0.022 seconds

Development of PolymerElectrolytes Based on Ionic Liquids forHigh Temperature/Low Humidity PEFC Applications (고온/저가습 고분자전해질 연료전지를 위한 이온성 액체 기반 고분자 전해질막 개발)

  • Sekhon, Satpal Singh;Park, Jin-Soo;Cho, Eun-Kyung;Park, Gu-Gon;Kim, Chang-Soo;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.40-43
    • /
    • 2008
  • High temperature polymer electrolyte membranes incorporating ionic liquids (ILs) in different polymers such as commercial fluorinated polymers, sulfonated polymers and recasted nafion have been developed. ILs based on imidazolium cation and different anions possess high ionic conductivity and good thermal stability and have been used in the present study. The membranes containing IL show conductivity ${\sim}10^{-2}S\;cm^{-1}$ above $100^{\circ}C$ under anhydrous conditions and are thermally stable up to $250-300^{\circ}C$. IL acts as a conducting medium in these electrolytes and plays the same role as played by water in fully hydrated nafion membranes. Due to high conductivity and good thermal stability, these membranes are promising materials for PEFCs at higher temperatures under anhydrous conditions.

  • PDF

Ionic Liquid based Carbon Dioxide Separation Membrane (이온성 액체를 이용한 이산화탄소 분리막)

  • Park, Jung Hyeok;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.3
    • /
    • pp.149-157
    • /
    • 2020
  • Ionic Liquid (IL) in the category of low-temperature molten salts with organic cation and organic/inorganic anion has shown great potentiality in CO2 gas separation. CO2 gas separation from flue gas by IL based membrane has been widely researched in recent years to overcome climate change and global warming. Membranes based on free standing polyionic liquid (PIL), blend of ionic liquid and composite ionic liquid membranes are discussed in this review. Introducing different IL monomers and tuning microstructure of PIL membrane and composite of PIL-IL to enhance mechanical properties of membranes with good CO2 gas permeability and selectivity. Variations in cation and anions of monomer has great impact on the membrane gas separation performance.

Electrical and Optical Properties of Newly Synthesised Low Bandgap Polymer with Protic and Aprotic Ionic Liquids (양자성, 비양자성 이온성 액체와 새롭게 합성된 낮은 밴드갭을 갖는 고분자와의 상호작용에 의한 전기적,광학적 특성 연구)

  • Kim, Joong-Il;Kim, In-Tae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.461-471
    • /
    • 2013
  • Use of low bandgap polymers is the most suitable way to harvest a broader spectrum of solar radiations for solar cells. But, still there is lack of most efficient low bandgap polymer. In order to solve this problem, we have synthesised a new low bandgap polymer and investigated its interaction with the ILs to enhance its conductivity. ILs may undergo almost unlimited structural variations; these structural variations have attracted extensive attention in polymer studies. In addition to this, UV-Vis spectroscopy, confocal Raman spectroscopy and FT-IR spectroscopy results have revealed that all studied ILs (tributylmethylammonium methyl sulfate [$N_{1444}$][$MeSO_4$] from ammonium family) and 1-methylimidazolium chloride ([MIM]Cl, and 1-butyl-3-methylimidazolium chloride [Bmim]Cl from imidazolium family) has potential to interact with polymer. Further, protic ILs shows enhanced conductivity than aprotic ILs with low bandgap polymer. This study provides the combined effect of low bandgap polymer and ILs that may generate many theoretical and experimental opportunities.

Characteristics of hydrogen adsorption peaks of electrodes containing ionic liquid for high temperature polymer electrolyte fuel cells (고온 연료전지용 이온성 액체를 함유한 전극의 수소 흡착피크의 특성)

  • Ryu, Sung-Kwan;Park, Jin-Soo;Yang, Tae-Hyun;Park, Seung-Hee;Park, S.H.;Yoon, Y.G.;Kim, Han-Sung;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.382-382
    • /
    • 2009
  • In this study, we prepared electrodes containing ionic liquid for high temperature polymer electrolyte fuel cells. Effects of ILs on electrochemical properties of the electrodes were investigated carrying out measurement of cyclic voltammograms of the various electrodes with the content of IL in a strong supporting electrolyte. As the ILs content increased in electrodes, electrochemical surface area(ESA) decreased due to the leakage of ILs from Nafion ionomer. In addition, two case of cyclic voltammograms under two simulated environment, i.e. IL leakage from Nafion ionomer in I) electrode and ii) polymer electrolyte, were investigated. As a result, IL leakage from polymer electrolyte showed worse results in electrochemical properties of the electrode.

  • PDF

Overview on Ionic Liquid Application Technologies for Back-end Fuel Cycle Processes (핵주기 공정에서의 이온성 액체 활용 기술 개요)

  • Kim, Ki-Sub;Park, Byung Heung
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.1-6
    • /
    • 2013
  • The ionic liquids are known to potential alternative solvents capable of replacing the commercial solvents in various processes including those in nuclear fuel cycle. As to the material, a number of studies have already reviewed the interesting results and addressed the spectroscopic as well as electrochemical behaviors of metal elements included in spent nuclear fuels. It has found that the important properties of metal ions in TBP dissolved ILs have led the development of alternative technologies to traditional solvent extraction processes. On the other hand, the electrochemical deposition of metal ions in ILs have been investigated for the application of the solvents to aqueous as well as to non-aqueous processes. In this work, a review on the application of ILs in nuclear fuel cycle is briefly presented to understand the notable researches on ILs focusing on aqueous processes.

  • PDF

Synthesis of Biodiesel from Soybean Oil Using Lewis Acidic Ionic Liquids Containing Metal Chloride Salts (금속염화물을 첨가한 루이스산 이온성 액체 촉매를 이용한 대두유로부터 바이오디젤 합성)

  • Choi, Jae Hyung;Park, Yong Beom;Lee, Suk Hee;Cheon, Jae Kee;Choi, Jae Wook;Woo, Hee Chul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.643-648
    • /
    • 2010
  • Production of biodiesel from soybean oil catalyzed by Lewis acidic ionic liquids(ILs) containing metal chloride salts was investigated in this study. Metal chloride salts, such as $SnCl_2$, $ZnCl_2$, $AlCl_3$, $FeCl_3$ and CuCl, were screened for oil transesterification in the range of 363-423 K. Among these metal chlorides, tin chloride showed particularly high catalytic property for the oil transesterification. Similarly, among these Lewis acidic ionic liquid catalysts, $[Me_3NC_2H_4OH]Cl-2SnCl_2$ resulted in a high fatty acid methyl esters(FAMEs) content of 91.1% under the following reaction conditions: 403 K, 14 h, and a molar ratio of 1:12:0.9 (oil:methanol:catalyst). Unlike the pure tin chloride catalysts, Lewis acidic ILs containing tin chloride $[Me_3NC_2H_4OH]Cl-2SnCl_2$ catalyst could be recycled up to five times without any significant loss of activity by separating from the FAMEs with simple decantation. The Lewis acidity and high moisture-stability of this catalyst appeared to be responsible for the excellent catalytic performance. The effects of reaction time and the molar ratio of methanol/catalyst to oil on the FAMEs production were also studied in this work.

Developement of a PEFC electrodes under the high temperature and low humidified conditions (고온/저 가습 운전을 위한 고분자 전해질 연료전지용 전극 개발)

  • Ryu, Sung-Kwan;Choi, Young-Woo;Park, Jin-Soo;Yim, Sung-Dae;Yang, Tae-Hyun;Kim, Han-Sung;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.149-149
    • /
    • 2009
  • Generally, Nafion ionomer is used in the polymer electrolyte fuel cell (PEFC) electrodes to achieve high power density. At the high temperature operation of PEFC, however, ionic conductivity of Nafion remarkably decreased due to the evaporation of water in Nafion polymer. Recently, many researchers have focused on using the Ionic Liquids(ILs) instead of water in Nafion polymer. ILs have intrinsic properties such as good electrochemical stability, high ionic conductivity, and non-flammability. Especially, ILs play a crucial role in proton conduction by the Grottuss mechanism and act as water in water-free Nafion polymer. However, it was found that the ILs was leached out of the polymer matrix easily. In this study, we prepared membrane electrode assemblies with various contents of ILs. The effect of ILs in the electrode of each designed was investigated by a cyclic voltammetry measurement and the cell performance obtained through a single cell test using H2/Air gases. Electrodes with different contents of ILs in catalyst layer were examined at high temperature and low humidified condition.

  • PDF

Development of Biopolymer-based Materials Using Ionic Liquids and Its Biotechnological Application (이온성 액체를 이용한 바이오폴리머 기반의 소재 개발 및 생명공학 분야로의 응용)

  • Lee, Sang-Hyun;Park, Tae-Joon
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.409-420
    • /
    • 2010
  • Biopolymer-based materials recently have garnered considerable interest as they can decrease dependency on fossil fuel. Biopolymers are naturally obtainable macromolecules including polysaccharides, polyphenols, polyesters, polyamides, and proteins, that play an important role in biomedical applications such as tissue engineering, regenerative medicine, drug-delivery systems, and biosensors, because of their inherent biocompatibility and biodegradability. However, the insolubility of unmodified biopolymers in most organic solvents has limited the applications of biopolymer-based materials and composites. Ionic liquids (ILs) are good solvents for polar organic, nonpolar organic, inorganic and polymeric compounds. Biopolymers such as cellulose, chitin/chitiosan, silk, and DNA can be fabricated from ILs into films, membranes, fibers, spheres, and molded shapes. Various biopolymer/biopolymer and biopolymer/synthetic polymer composites also can be prepared by co-dissolution of polymers into IL mixtures. Heparin/biopolymer composites are especially of interest in preparing materials with enhanced blood compatibility.

Application of Screening Technology for Capture of Hydrogen Sulfide Using Ionic Liquids (이온성 액체의 황화수소의 포집을 위한 스크리닝 기법의 활용)

  • Han, Sangil;Lee, Bong-Seop
    • Journal of Industrial Technology
    • /
    • v.39 no.1
    • /
    • pp.41-45
    • /
    • 2019
  • Hydrogen sulfide ($H_2S$) is mainly produced along with methane and hydrocarbons in many gas fields as well as hydrodesulfurization processes of crude oils containing sulfur compounds and the emission of $H_2S$ has a considerable effect on both environmental problem and human health aspects due to formation of, e.g. acid rain and smog. In recent years, ionic liquids (ILs) have been proposed as the most promising solvents for $CO_2$ and hazardous pollutants capture, such as $H_2S$ and sulfur dioxide ($SO_2$). In this work, we demonstrate the use of the predictive COSMO-SAC model for the prediction of Henry's law constant of $H_2S$ in ILs. Furthermore, the method is used to screen for potential IL candidates for $H_2S$ capture from a set of 2,624 ILs formed from 82 cations and 32 anions. The effects of cation on the Henry's law constant of $H_2S$ such as (i) the variation of the alkyl chain length on cation, (ii) the substituent of methyl group ($-CH_3$) for H in C(2) position and (iii) the change of ring structure for cation family are clearly predicted by COSMO-SAC model.