Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.3.149

Ionic Liquid based Carbon Dioxide Separation Membrane  

Park, Jung Hyeok (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
Publication Information
Membrane Journal / v.30, no.3, 2020 , pp. 149-157 More about this Journal
Abstract
Ionic Liquid (IL) in the category of low-temperature molten salts with organic cation and organic/inorganic anion has shown great potentiality in CO2 gas separation. CO2 gas separation from flue gas by IL based membrane has been widely researched in recent years to overcome climate change and global warming. Membranes based on free standing polyionic liquid (PIL), blend of ionic liquid and composite ionic liquid membranes are discussed in this review. Introducing different IL monomers and tuning microstructure of PIL membrane and composite of PIL-IL to enhance mechanical properties of membranes with good CO2 gas permeability and selectivity. Variations in cation and anions of monomer has great impact on the membrane gas separation performance.
Keywords
ionic liquids (ILs); permeability; selectivity; membrane; carbon dioxide;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 I. Kammakakam, K. E. O'Harra, J. E. Bara, and E. M. Jackson, "Design and synthesis of imidazolium-mediated Troger's base-containing ionene polymers for advanced $CO_2$ separation membranes", ACS Omega, 4, 3439 (2019).   DOI
2 W. M. McDanel, M. G. Cowan, J. A. Barton, D. L. Gin, and R. D. Noble, "Effect of monomer structure on curing behavior, $CO_2$ solubility, and gas permeability of ionic liquid-based epoxy-amine resins and ion-gels", Ind. Eng. Chem. Res., 54, 4396 (2015).   DOI
3 K. Friess, M. Lanc, K. Pilnacek, V. Fila, O. Vopicka, Z. Sedlakova, M. G. Cowan, W. M. McDanel, R. D. Noble, D. L. Gin, and P. Izak, "$CO_2/CH_4$ separation performance of ionic-liquid-based epoxy-amine ion gel membranes under mixed feed conditions relevant to biogas processing", J. Membr. Sci., 528, 64 (2017).   DOI
4 P. Li, D. R. Paul, and T. S. Chung, "High performance membranes based on ionic liquid polymers for $CO_2$ separation from the flue gas", Green Chem., 14, 1052 (2012).   DOI
5 M. G. Cowan, D. L. Gin, and R. D. Noble, "Poly (ionic liquid)/ionic liquid ion-gels with high "free" ionic liquid content: Platform membrane materials for $CO_2$/light gas separations", Acc. Chem. Res., 49, 724 (2016).   DOI
6 D. A. Kang, K. Kim, and J. H. Kim, "Highly-permeable mixed matrix membranes based on SBS-g-POEM copolymer, ZIF-8 and ionic liquid", Membr. J., 29, 44 (2019).   DOI
7 Y. F. Hu, Z. C. Liu, C. M. Xu, and X. M. Zhang, "The molecular characteristics dominating the solubility of gases in ionic liquids", Chem. Soc. Rev., 40, 3802 (2011).   DOI
8 K. W. Yoon and S. W. Kang, "1-Butyl-3-methylimidazolium tetrafluoroborate/$Al_2O_3$ composite membrane for $CO_2$ separation", Membr. J., 27, 226 (2017).   DOI
9 P. Luis, T. Van Gerven, and B. Van der Bruggen, "Recent developments in membrane-based technologies for $CO_2$ capture", Prog. Energy Combust., 38, 419 (2012).   DOI
10 N. U. Kim, B. J. Park, M. S. Park, and J. H. Kim "Effect of PVP on $CO_2/N_2$ separation performance of self-crosslinkable P(GMA-g-PPG)-co-POEM) membranes", Membr. J., 28, 113 (2018).   DOI
11 L. C. Tomé and I. M. Marrucho, "Ionic liquid-based materials: A platform to design engineered $CO_2$ separation membranes", Chem. Soc. Rev., 45, 2785 (2016).   DOI
12 W. Qian, J. Texter, and F. Yan, "Frontiers in poly (ionic liquid)s: Syntheses and applications", Chem. Soc. Rev., 46, 1124 (2017).   DOI
13 S. J. Moon, H. J. Min, N U. Mim, and J. H. Kim, "Fabrication of polymeric blend membranes using PBEM-POEM comb copolymer and poly(ethylene glycol) for $CO_2$ capture", Membr. J., 29, 223 (2019).   DOI
14 A. S. Shaplov, D. O. Ponkratov, and Y. S. Vygodskii, "Poly(ionic liquid)s: Synthesis, properties, and application", Polym. Sci. Ser. B, 58, 73 (2016).   DOI
15 X. Yan, S. Anguille, M. Bendahan, and P. Moulin, "Ionic liquids combined with membrane separation processes: A review", Sep. Purif. Technol., 222, 230 (2019).   DOI
16 S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, and S. Zhang, "Ionic-liquid-based $CO_2$ capture systems: Structure, interaction and process", Chem. Rev., 117, 9625 (2017).   DOI
17 J. Yin, C. Zhang, Y. Yu, T. Hao, H. Wang, X. Ding, and J. Meng, "Tuning the microstructure of crosslinked poly(ionic liquid) membranes and gels via a multicomponent reaction for improved $CO_2$ capture performance", J. Membr. Sci., 593, 117405 (2020).   DOI
18 L. C. Tome, D. J. S. Patinha, C. S. R. Freire, L. P. N. Rebelo, and I. M. Marrucho, "$CO_2$ separation applying ionic liquid mixtures: The effect of mixing different anions on gas permeation through supported ionic liquid membranes", RSC Adv., 3, 12220 (2013).   DOI
19 W. J. Horne, M. A. Andrews, M. S. Shannon, K. L. Terrill, J. D. Moon, S. S. Hayward, and J. E. Bara, "Effect of branched and cycloalkyl functionalities on $CO_2$ separation performance of poly(IL) membranes", Sep. Purif. Technol., 155, 89 (2015).   DOI
20 M. G. Cowan, M. Masuda, W. M. McDanel, Y. Kohno, D. L. Gin, and R. D. Noble, "Phosphonium-based poly(Ionic liquid) membranes: The effect of cation alkyl chain length on light gas separation properties and Ionic conductivity", J. Membr. Sci., 498, 408 (2016).   DOI
21 T. K. Carlisle, J. E. Bara, A. L. Lafrate, D. L. Gin, and R. D. Noble, "Main-chain imidazolium polymer membranes for $CO_2$ separations: An initial study of a new ionic liquid-inspired platform", J. Membr. Sci., 359, 37 (2010).   DOI
22 T. K. Carlisle, G. D. Nicodemus, D. L. Gin, and R. D. Noble, "$CO_2$/light gas separation performance of cross-linked poly(vinylimidazolium) gel membranes as a function of ionic liquid loading and cross-linker content", J. Membr. Sci., 397-398, 24 (2012).   DOI
23 T. K. Carlisle, E. F. Wiesenauer, G. D. Nicodemus, D. L. Gin, and R. D. Noble, "Ideal $CO_2$/light gas separation performance of poly(vinylimidazolium) membranes and poly(vinylimidazolium)-ionic liquid composite films", Ind. Eng. Chem. Res., 52, 1023 (2013).   DOI
24 P. Nellepalli, L. C. Tome, K. Vijayakrishna, and I. M. Marrucho, "Imidazolium-based copoly(ionic liquid) membranes for $CO_2/N_2$ separation", Ind. Eng. Chem. Res., 58, 2017 (2019).   DOI
25 E. K. O'Harra, I. Kammakakam, M. E. Devriese, M. D. Noll, E. J. Bara, and M. E. Jackson, "Synthesis and performance of 6FDA-based polyimide-ionenes and composites with ionic liquids as gas separation membranes", Membranes, 9, 79 (2019).   DOI