• Title/Summary/Keyword: 이온선택성수지

Search Result 71, Processing Time 0.027 seconds

A Study of Selective Absorption of Metal Ions by Chelating Agent-Loaded Anion Exchange Resins (킬레이트 시약으로 처리한 음이온 교환수지에 의한 금속이온의 선택적 흡착에 관한 연구)

  • Lee Dai Woon;Lee, Won;Yu Euy Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.141-151
    • /
    • 1979
  • The selective absorption of metal ions by chelating agent-loaded resins was studied in aqueous media. The resins were prepared by loading the conventional anion exchange resin, Dowex 1-X8 (50 to 100 mesh) with chelating agents containing sulfonic group, such as 8-hydroxy-quinoline-5-sulfonic acid (HQS) and 7-nitroso-8-hydroxyquinoline-5-sulfonic acid (NHQS). The stability of the resin was markedly influenced by the following factors; (1) the affinity and concentration of anions in the external solution, (2) the pH of the media. The optimum conditions for the absorption of metal ions were determined with respect to the pH, shaking time, and the effect of anion concentration in the medium. Under the optimum condition the order of the absorption of metal ions such as Fe(Ⅲ), Cu(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) was in accord with that of the stability constants of the chelates. The total capacities of the resins were found in the range of 0.6∼1.6 mmole metal per gram.

  • PDF

Enhancement of Selective Removal of Nitrate Ions from a Mixture of Anions Using a Carbon Electrode Coated with Ion-exchange Resin Powder (이온교환수지 분말이 코팅된 탄소전극을 이용한 음이온 혼합용액에서 Nitrate 이온의 선택적 제거율 향상)

  • Yeo, Jin-Hee;Choi, Jae-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • We fabricated a composite carbon electrode to remove nitrate ions selectively from a mixed solution of anions. The electrode was fabricated by coating the surface of a carbon electrode with the nitrate-selective anion exchange resin (BHP55, Bonlite Co.) powder. We performed capacitive deionization (CDI) experiments on a mixed solution containing chloride, nitrate, and sulfate ions using a BHP55 cell constructed with the fabricated electrode. The removal of nitrate ions in the BHP55 cell was compared to that of a membrane capacitive deionization (MCDI) cell constructed with ion exchange membranes. The total quantity of ions adsorbed in BHP55 cell was $38.3meq/m^2$, which is 31% greater than that of MCDI cell. In addition, the number of nitrate adsorption in the BHP55 cell was $15.9meq/m^2$ (42% of total adsorption), 2.1 times greater than the adsorption in the MCDI cell. The results showed that the fabricated composite carbon electrode is very effective in the selective removal of nitrate ions from a mixed solution of anions.

Conceptual Design of Pretreatment Process for SIES Using Membrane Process (막분리 공정을 이용한 SIES 전처리설비 개념 설계)

  • 이상진;양호연;신상운
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.15-20
    • /
    • 2003
  • During operation process of SIES(Selective ion exchange system) at Kori Unit 2, it was impossible to remove radionuclides such as ion form and Ag-110m, etc., because activated carbon and ion exchange resin of this system are fouled easily by suspended solids and oils in liquid radwaste that was flowed in this system. In this study, an experiment to improve quality of water which was flowed in SIES was performed. and design data of Scale-up pretreatment process were secured. Also, each module design for Microfiltration and Nanofiltration unit of the pretreatment process for SIES was performed.

  • PDF

Studies on the Separation and Preconcentration of Metal Ions by Chelating Resin containing (Polystyrene-divinylbenzene)-thiazolylazo Phenol Derivatives(I) ((Polystyrene-divinylbenzene)-thiazolylazo phenol형 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구(I))

  • Lim, Jae-Hee;Kim, Min-Kyun;Lee, Chang-Hun;Lee, Won
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.279-291
    • /
    • 1996
  • The new chelating resins, XAD-2, 4, 16-TAC and XAD-2, 4, 16-TAO were synthesized by Amberlite XAD-2, XAD-4, and XAD-16 macroreticular resins with 2-(2-thiazolylazo)-p-cresol(TAC) and 4-(2-thiazolylazo)orcinol(TAO) as functional groups and were characterized by elemental analysis and FT-IR spectrometry. It was found that the content of functional group in chelating resin was 0.60mmol/g in XAD-16-TAC and 0.68mmol/g in XAD-16-TAO respectively. The chelating resins were stable in acidic and alkaline solution and can be reused over 10 times. The sorption behavior of some metalions to two chelating resins was investigated by batch method, which included batch equilibrium, effect of pH, coexisting ions and masking agent. For the optimum condition of sorption, the time required for equilibrium was about 1 hour and optimum pH was 5. In the presence of anions such as ${SO_4}^{2-}$ and $CH_3COO^-$, the sorption of U(VI) ion was slightly reduced but other anions such as $Cl^-$ and $NO{_3}^-$ revealed no interference effect. Also, sorption capacity of U(VI) ion was decreased by addition of $CO{_3}^{2-}$ ion because of complex formation of $[UO_2(CO_3)_3]^{4-}$, but alkali metals and alkali earth metals including Na(I), K(I), Mg(II), and Ca(II) were not affected for the sorption extent. Masking agent, NTA showed better separation efficiency of U(VI) ion from coexisting metal ions such as Th(IV), Zr(IV), Hf(IV), Cu(II), Cd(II), Pb(II), Ni(II), Zn(II) and Mn(II) than EDTA, CDTA.

  • PDF

Characteristics of Selectivity in Anion Exchanges (음이온 선택도 특성)

  • 이석중;안현경;이인형
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.3
    • /
    • pp.194-197
    • /
    • 2002
  • Ion exchange is a chemical reaction between the ions in solution phase and ions in solid phase and is widely used in softening, demineralization, removal and collection of specific ions, and ion migration in the ground water. The ion selectivity depends on the charge and the hydrated radius of ion. The objective of this study was to examine the applicability of anion selectivity obtained from the ion exchange equilibrium OH/sup -/ < F/sup -/ < HCO/sup -/ < Cl/sup -/ < Br/sup -/ ≤ NO₃/sup -/ < SO₄/sup 2-/ to the column ion exchange. The column ion exchange was facilitated in the lower charge of counter-ion in the background electrolyte.

  • PDF

Selective Separation and Determination of Iron with Ion-Exchange Resins (이온교환수지에 의한 철의 선택적 분리 및 정량)

  • Yong Soon Chung;Dong Won Kim;Seung Ho Kim;Dai Woon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.45-54
    • /
    • 1987
  • Dowex 1-X8 resin ion exchanged with calcon carboxylic acid (CCA-Dowex 1-X8) and 2-methyl-8-hydroxyquinoline(MHQ) impregnated-Amberlite XAD-4 resin (MHQ-XAD-4) were examined for the separation and preconcentration of ferric ion from the various matrices. The stabilities of these resins were investigated, and their capacities on ferric ion were also measured. The effect of pH on the adsorption of ferric ion and matrix ions, such as Al(Ⅲ) and Ca(Ⅱ), was investigated to determine the optimun pH ranges. Separation and preconcentration of iron in aluminium foil and mineral water samples were studied by elution method with these resin columns. The recovered ions by 10ml of 2F nitric acid was determined by flame atomic spectrophotometry. SP-Sephadex C-25 column was used to separate ferrous and ferric ion in mineral water by stepwise elution with ferrozine and 1 % ascorbic acid-ferrozine solution. The concentrated and separated each ion could be determined spectrophotometrically at the analytical wavelenth of Fe(Ⅱ)-ferrozine complex (562nm).

  • PDF

Adsorption Characteristics of Uranium (VI) Ion on OenNdien Resin with Styrene Hazardous Material (스타이렌 위험물을 포함한 OenNdien 수지에 의한 우라늄(VI) 이온의 흡착 특성)

  • Kim, Joon-Tae
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.697-702
    • /
    • 2011
  • Ion exchange resins have been synthesized from chloromethylated styrene-1,4-divinylbenzene (DVB) with 1%, 2%, 5% and 15%-crosslinkage and macrocyclic ligand of $OenNdien-H_4$ by copolymerization. The adsorption characteristics of uranium (${UO_2}^{2+}$), potassium ($K^+$) and neodymium ($Nd^{3+}$) metallic ions have been investigated. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, time, and crosslinkage on adsorption of metallic ions were also studied. The uranium ion showed the fast adsorption on the resins above pH 3. The optimum equilibrium time for the adsorption of metallic ions was about two hours. The adsorption selectivity determined in methanol solution was in increasing order uranium (${UO_2}^{2+}$) > potassium ($K^+$) > neodymium ($Nd^{3+}$) ion. Moreover, the adsorption was increased with the crosslinkage concentration in order of 1%, 2%, 5% and 15%-crosslinkage resin.

A Study on Resin Synthesis and Adsorption Characteristics for Separation and Recovery of U(VI) (우라늄(VI)의 분리회수를 위한 수지합성과 흡착특성에 관한 연구)

  • 강영식;노기환
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.1
    • /
    • pp.31-41
    • /
    • 1999
  • Several new ion exchange resins have been synthesized from chloromethyl styrene-1, 4-di-vinylbenzene with 1%, 2%, 5% and 10%-crosslinking and macrocyclic ligands of cryptand type by interpolymerization method. The adsorption characteristics and the pH, time, solvents and concentration dependence of the adsorption of metal ions by this resin were studied. The correlation between the separation characteristics of uranium and transition metal on the resins and the stability constants of complexes with macrocyclic ligands have been examined. The resins were very stable in both acidic and basic media and had good resistance to heat at $280^{\circ}C$. The $UO_2^{2+}$ aqueous solution was not adsorbed on the resins below pH 3.0, but the power of adsorption of $UO_2^{2+}$ increased rapidly above pH 4.0. The optimum equilibrium time for adsorption of metallic ions was twenty minutes and adsorptive power decreased in proportion to crosslinking size of the resins and order of dielectric constants of solvents used and the selective sequence for metal cations is in the order of $UO_2^{2+}$, $Cu^{2+}$ and $Ce^{3+}$ .

  • PDF

Adsorption of uranium(VI), calcium(II), and samarium(III) ions on synthetic resin adsorbent with styrene hazardous materials (스타이렌 위험물을 포함한 합성수지 흡착제에 의한 U(VI), Ca(II), Sm(III) 이온들의 흡착)

  • Kim, Joon-Tae
    • Analytical Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.92-100
    • /
    • 2009
  • Azacrown resins were synthesized by mixing 1-aza-12-crown-4 macrocyclic ligand into styrene (2th petroleum in 4th class hazardous materials) divinylbenzene (DVB) copolymer with crosslinkage of 1%, 2%, 5% and 10% by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, thermogravimetric analysis (TGA), surface area (BET), and IR-spectroscopy. The effects of pH, time, crosslinkage of resins and dielectric constant of solvent on adsorption of metal ions by resin adsorbent were investigated. Metal ions showed a great adsorption over pH 3 and adsorption equilibrium of metal ions was about two hours. In addition, adsorptive selectivity of metals on the resin in ethanol solvent was increased in the order of ${UO_2}^{2+}$ > $Ca^{2+}$ > $Sm^{3+}$ ion and adsorption of uranium ion was decreased with increase of crosslinkage such as 1%, 2%, 5% and 10% and was inversely proportional to the order of dielectric constant of solvents.