Enhancement of Selective Removal of Nitrate Ions from a Mixture of Anions Using a Carbon Electrode Coated with Ion-exchange Resin Powder

이온교환수지 분말이 코팅된 탄소전극을 이용한 음이온 혼합용액에서 Nitrate 이온의 선택적 제거율 향상

  • Yeo, Jin-Hee (Department of Chemical Engineering, Kongju National University) ;
  • Choi, Jae-Hwan (Department of Chemical Engineering, Kongju National University)
  • Published : 2013.02.10

Abstract

We fabricated a composite carbon electrode to remove nitrate ions selectively from a mixed solution of anions. The electrode was fabricated by coating the surface of a carbon electrode with the nitrate-selective anion exchange resin (BHP55, Bonlite Co.) powder. We performed capacitive deionization (CDI) experiments on a mixed solution containing chloride, nitrate, and sulfate ions using a BHP55 cell constructed with the fabricated electrode. The removal of nitrate ions in the BHP55 cell was compared to that of a membrane capacitive deionization (MCDI) cell constructed with ion exchange membranes. The total quantity of ions adsorbed in BHP55 cell was $38.3meq/m^2$, which is 31% greater than that of MCDI cell. In addition, the number of nitrate adsorption in the BHP55 cell was $15.9meq/m^2$ (42% of total adsorption), 2.1 times greater than the adsorption in the MCDI cell. The results showed that the fabricated composite carbon electrode is very effective in the selective removal of nitrate ions from a mixed solution of anions.

혼합용액에서 nitrate 이온을 선택적으로 제거하기 위해 복합탄소전극을 제조하였다. 질산이온 선택성 수지(BHP55, Bonlite Co.) 분말을 탄소전극 표면에 코팅하여 전극을 제조하였다. 제조한 전극으로 BHP55 셀을 제작하여 chloride, nitrate, sulfate 이온이 혼합된 용액에 대해 축전식 탈염 실험을 수행하였다. 그리고 BHP55 셀에서의 질산 이온 제거량을 이온교환막을 결합한 MCDI 셀의 결과와 비교하였다. BHP55 셀에서 이온의 총 흡착량은 MCDI 셀에서 보다 31% 증가한 $38.3meq/m^2$를 나타냈다. 또한 BHP55 셀에서 질산 이온의 흡착량은 $15.9meq/m^2$ (전체 흡착량의 42%)이었고, 이는 MCDI 셀에서 보다 2.1배 큰 것으로 나타났다. 실험결과 제조한 복합탄소전극은 음이온 혼합용액에서 질산 이온을 선택적으로 제거하는데 매우 효과적임을 알 수 있었다.

Keywords

References

  1. M. A. Anderson, A. L. Cudero, and J. Palma, Electrochim. Acta, 55, 3845 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
  2. Y. Oren, Desalination, 228, 10 (2008). https://doi.org/10.1016/j.desal.2007.08.005
  3. T. J. Welgemoed and C. F. Schutte, Desalination, 183, 327 (2005). https://doi.org/10.1016/j.desal.2005.02.054
  4. M. Mossad and L. Zou, J. Hazard. Mater., 213, 491 (2012).
  5. Y. J. Kim and J. H. Choi, Sep. Purif. Technol., 71, 70 (2010). https://doi.org/10.1016/j.seppur.2009.10.026
  6. S. J. Seo, H. Jeon, J. K. Lee, G. Y. Kim, D. W. Park, H. Hojima, J. Lee, and S. H. Moon, Water Res., 44, 2267 (2010). https://doi.org/10.1016/j.watres.2009.10.020
  7. P. M. Biesheuvel, J. Colloid Interface Sci., 332, 258 (2009). https://doi.org/10.1016/j.jcis.2008.12.018
  8. L. M. Chang, X. Y. Duan, and W. Liu, Desalination, 270, 285 (2011). https://doi.org/10.1016/j.desal.2011.01.008
  9. M. W. Ryoo, and G. Seo, Water. Res., 37, 1527 (2003). https://doi.org/10.1016/S0043-1354(02)00531-6
  10. B. H. Park, Y. J. Kim, J. S. Park, and J. H. Choi, J. Ind. Eng. Chem., 17, 717 (2011). https://doi.org/10.1016/j.jiec.2011.05.015
  11. C. J. Gabelich, T. D. Tran, and I. H. "MEL" Suffet, Environ. Sci. Technol., 36, 3010 (2002). https://doi.org/10.1021/es0112745
  12. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, and Z. Sun, Water Res., 42, 4923 (2008). https://doi.org/10.1016/j.watres.2008.09.026
  13. H. Li, L. Zou, L. Pan, and Z. Sun, Environ. Sci. Technol., 44, 8692 (2010). https://doi.org/10.1021/es101888j
  14. L. Zou, G. Morris, and D. Qi, Desalination, 225, 329 (2008). https://doi.org/10.1016/j.desal.2007.07.014
  15. M. Haro, G. Rasines, C. Macias, C. O. Ania, Carbon, 49, 3723 (2011). https://doi.org/10.1016/j.carbon.2011.05.001
  16. H. Li, L. Zou, L. Pan, and Z. Sun, Sep. Purif. Technol., 75, 8 (2010). https://doi.org/10.1016/j.seppur.2010.07.003
  17. M. D. Andelman, CA Patent 2444390 (2002).
  18. J. B. Lee, K. K. Park, H. M. Eum, and C. W. Lee, Desalination, 196, 125 (2006). https://doi.org/10.1016/j.desal.2006.01.011
  19. Y. J. Kim and J. H. Choi, Water Res., 44, 990 (2010). https://doi.org/10.1016/j.watres.2009.10.017
  20. C. E. Harland, Ion Exchange: Theory and Practice, Thomas Graham House, Cambridge (1994).
  21. B. E. Conway, Electrochemical Supercapacitors : Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York (1999).
  22. A. J. Bard and L. R. Faulkner, Electrochemical Methods : Fundamentals and Application, 2nd Ed., John Wiley & Sons, Inc. (2001).
  23. H. Strathmann, Ion-Exchange Membrane Separation Processes, Elsevier, Amsterdam (2004).