• Title/Summary/Keyword: 이온밀링

Search Result 48, Processing Time 0.03 seconds

Properties of Exchange Bias Coupling Field and Coercivity Using the Micron-size Holes Formation Inside GMR-SV Film (GMR-SV 박막내 미크론 크기의 홀 형성을 이용한 교환결합세기와 보자력 특성연구)

  • Bolormaa, Munkhbat;Khajidmaa, Purevdorj;Hwang, Do-Guwn;Lee, Sang-Suk;Lee, Won-Hyung;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.117-122
    • /
    • 2015
  • The holes with a diameter of $35{\mu}m$ inside the GMR-SV (giant magnetoresistance-spin valve) film were patterned by using the photolithography process and ECR (electron cyclotron resonance) Ar-ion milling. From the magnetoresistance curves of the GMR-SV film with holes measuring by 4-electrode method, the MR (magnetoresistance ratio) and MS (magnetic sensitivity) are almost same as the values of initial states. On other side hand, the $H_{ex}$ (exchange bias coupling field) and $H_c$ (coercivity) dominantly increased from 120 Oe and 10 Oe to 190 Oe and 41 Oe as increment of the number of holes inside GMR-SV film respectively. These results were shown to be attributed to major effect of EMD (easy magnetic domian) having a region positioned between two holes perpendicular to the sensing current. On the basis of this study, the fabrication of GMR-SV applying to the hole formation improved the magnetoresistance properties having the thermal stability and durability of bio-device.

A Review on the Wet Chemical Synthesis of Sulfide Solid Electrolytes for All-Solid-State Li Batteries (전고체전지용 황화물 고체전해질 습식 합성기술 동향)

  • Ha, Yoon-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.95-104
    • /
    • 2022
  • The development of non-flammable all-solid-state batteries (ASSLBs) has become a hot topic due to the known drawbacks of commercial lithium-ion batteries. As the possibility of applying sulfide solid electrolytes (SSEs) for electric vehicle batteries increases, efforts for the low-cost mass-production are actively underway. Until now, most studies have used high-energy mechanical milling, which is easy to control composition and impurities and can reduce the process time. Through this, various SSEs that exceed the Li+ conductivity of liquid electrolytes have been reported, and expectations for the realization of ASSLBs are growing. However, the high-energy mechanical milling method has disadvantages in obtaining the same physical properties when mass-produced, and in controlling the particle size or shape, so that physical properties deteriorate during the full process. On the other hand, wet chemical synthesis technology, which has advantages in mass production and low price, is still in the initial exploration stage. In this technology, SSEs are mainly manufactured through producing a particle-type, solution-type, or mixed-type precursor, but a clear understanding of the reaction mechanism hasn't been made yet. In this review, wet chemical synthesis technologies for SSEs are summarized regarding the reaction mechanism between the raw materials in the solvent.

The Fabrication and Magnetoresistance of Nanometer-sized Spin Device Driven by Current Perpendicular to the Plane (수직전류 인가형 나노 스핀소자의 제조 및 자기저항 특성)

  • Chun, M.G.;Lee, H.J.;Jeung, W.Y.;Kim, K.Y.;Kim, C.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.61-66
    • /
    • 2005
  • In order to make submicron cell for spin-injection device, lift-off method using Pt stencil and wet etching was chosen. This approach allows batch fabrication of stencil substrate with electron-beam lithography. It simplifies the process between magnetic film stack deposition and final device testing, thus enabling rapid turnaround in sample fabrication. Submicron junctions with size of $200nm{\times}300nm$ and $500nm{\times}500nm$ 500 nm and pseudo spin valve structure of $CoFe(30{\AA})/Cu(100{\AA})/CoFe(120{\AA}$) was deposited into the nanojunctions. MR ratio was 0.8 and $1.1{\%}$, respectively and spin transfer effect was confirmed with critical current of $7.65{\times}10^7A/cm^2$.

Effect of Graphite Mixing Method on Electrode Characteristics in Cathode Resynthesis of Lithium Battery (리튬전지(電池) 양극(陽極) 재합성시(再合成時) 흑연(黑鉛) 도전재(導電材) 혼합방법(混合方法)이 전극특성(電極特性)에 미치는 영향(影響))

  • Lee, Churl-Kyoung;Kim, Tae-Hyun
    • Resources Recycling
    • /
    • v.19 no.1
    • /
    • pp.27-32
    • /
    • 2010
  • To improve electronic conductivity of cathodic active materials of lithium ion battery, carbonaceous materials is usually added. New mixing method of abrasive milling has been investigated in mixing of graphite and $LiCoO_2$ powders. It would be expected that uniform mixing of graphite reduces capacity fading of cathode of lithium battery. Abrasion milled $LiCoO_2$ composite showed the best electrochemical performance as a cathode material with 1 wt% of graphite content, 300 rpm of milling speed, and 10 min of milling time. The improvement of the electrochemical performances such as cycleability and charge/discharge capacity retention would be mainly attributed to increase of the electronic conductivity and/or prevention of the active materials by uniform dispersion and coating of graphite on $LiCoO_2$.

Investigation of the interface between diamond film and silicon substrate using transmission electron microscopy (투과 전자 현미경을 이용한 다이아몬드 박막과 실리콘 기판의 계면 연구)

  • 김성훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.100-104
    • /
    • 2000
  • Diamond film was deposited on Si substrate by using microwave plasma-enhanced chemical vapor deposition (MPECVD) system. After thinning the cross section between diamond film and Si substrate by ion milling method, we investigated its interface via transmission electron microscopy We could observe that the diamond film was grown either directly on Si substrate or via the interlayer between diamond film and Si substrate. Thickness of the interlayer was varied along the cross section. The interlayer might mainly composed of Sic andlor amorphous carbon. We could observe the well-developed electron diffraction pattern of both Si and diamond around the interface. Based on this result, we can conjecture the initial growth behavior of diamond film on Si substrate.

  • PDF

Thermochemical hydrogen production utilization of M-ferrite (M=Co,Ni,Mn) (M-ferrite를 이용한 열화학적 수소제조 (M=Co,Ni,Mn))

  • Cho Mi-Sun;Kim Woo-Jin;Woo Sung-Woong;Park Chu-Sik;Kang Kyoung-Soo;Choi Sang-Il
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.69-74
    • /
    • 2006
  • 본 연구는 페라이트의 Fe 양이온 일부를 Ni, Mn, Co등으로 치환하여 M-ferrite를 제조하여 열화학적 2단계 물 분해 반응의 특성을 비교 평가하였고, XRD, SEM, GC등의 분석으로 각 금속산화물의 특성을 확인하였다. M-ferrites 는 고상법으로 제조하였다. 각각의 M-ferrite에 대한 열적환원은 1573K 에서 진행하였고 물 분해 반응은 1273K 에서 실시하였다. 이 반응에서 생성된 가스는 전량 포집하여 GC를 통해 분석하였다. 반응 전후의 시료에 대하여 SEM, XRD를 분석하여 GC결과와 함께 금속산화물의 산화환원반응 특성을 고찰하였다. 그 결과로서 물 분해 반응 후 M-ferrite (M=Co, Ni, Mn)의 생성을 XRD를 통하여 확인할 수 있었고, 물 분해 반응과의 비교결과 격자상수의 증대가 M-ferrite내의 산소의 환원에 영향을 미치는 것을 알 수 있었다. SEM결과에서는 4cycle의 물 분해 반응 후 Mn-ferrite의 심한 sintering 현상을 확인 할 수 있었다.

  • PDF

Oxygen Annealing Effect of SrTiO$_3$ Single Crystal Substrate Damaged by Ar$^+$ Ion Milling (Ar 이온 밀링으로 손상된 단결정 SrTiO$_3$ 기판의 산소 열처리 효과)

  • Choi, Hee-Seok;Hwang, Yun-Seok;Kim, Jin-Tae;Lee, Doon-Hoon;Lee, Soon-Gul;Park, Yong-Ki;Park, Jong-Chul
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.87-90
    • /
    • 1999
  • We have studied the annealing effects of 570 (SrTiO$_3$) single crystal substrate and the I-V properties of step-edge junctions after Ar ion milling. YBa$_2Cu_3O_7$ (YBCO) thin films are fabricated on the substrates by using pulsed laser deposition (PLD) and photolithography. The surface of Ar ion milled substrate was characterized with atomic force microscope (AFM) and scanning electron microscope (SEM) images. After the substrate was damaged by milling, the critical current density of YBCO thin films deposited on the substrate was lowered. The annealing of the damaged substrate at about 1000 $^{\circ}C$ recovered the critical current density to that before the milling. Futhermore the annealing helped junction formation due to high quality film and increased the yield rate for the fabrication of high quality step-edge junction.

  • PDF

Electrochemical Properties of SnCo for Anode Material of Li Ion Batteries (리튬 이온 전지 음극 재료용 SnCo의 전기화학적 특성)

  • Kim, Ki-Tae;Kim, Yong-Mook;Lee, Yong-Ju;Lee, Ki-Young;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.242-248
    • /
    • 2002
  • SnCo alloy powder prepared by high energy ball milling is examined as an anode material for lithium-ion batteries. As the ball-milling time increased, the crystallinity of SnCo decreased. XRD and TEM SADP showed that nanocrystalline and amorphous phase coexisted after 16 h ball-milling. As the crystallinity decreased, the cycleability increased. At first cycle, there are 4 plateau potentials. The observation of voltage plateau at about 0.68 V confirms the formation of Sn-Li alloy and Co metal. It is considered that The plateau potentials below 0.68 V were reaction between Li and Sn. The change of chemical diffusion coefficient showed that the structure of SnCo alloy abruptly changed at first cycle, and maintained after 2nd cycle.

Thermochemical hydrogen production utilization of M-ferrite (M=Co,Ni,Mn) (M-ferrite를 이용한 열화학적 수소제조(M=Co,Ni,Mn))

  • Cho, Mi-Sun;Kim, Woo-Jin;Woo, Sung-Woong;Park, Chu-Sik;Kang, Kyoung-Soo;Choi, Sang-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.43-46
    • /
    • 2006
  • 본 연구는 페라이트의 Fe 양이온 일부를 Ni, Mn, Co등으로 치환하여 M-ferrites를 제조하여 열화학적 2단계 물 분해 반응의 특성을 비교 평가하였고, XRD, SEM, GC등의 분석으로 각 금속산화물의 특성을 확인하였다. M-ferrites는 고상법으로 제조하였다. 각각의 M-ferrites에 대한 열적환원은 1573K에서 진행하였고 물 분해 반응은 1273K에서 실시하였다. 이 반응에서 생성된 가스는 전량 포집하여 GC를 통해 분석하였다. 반응 전후의 시료에 대하여 SEM, XRD를 분석하여 GC결과와 함께 금속산화물의 산화환원반응 특성을 고찰하였다. 그 결과로서 물 분해 반응 후 M-ferrite (M=Co, Ni, Mn)의 생성을 XRD를 통하여 확인할 수 있었고, 물 분해 반응과의 비교결과 격자상수의 증대가 M-ferrite내의 산소의 환원에 영향을 미치는 것을 알 수 있었다. SEM결과에서는 4cycle의 물 분해 반응 후 Mn-ferrite의 심한 sintering 현상을 확인 할 수 있었다.

  • PDF

Applications of Focused Ion Beam for Biomedical Research (의생물 연구 분야에서 집속이온빔장치의 응용)

  • Kim, Ki-Woo;Baek, Saeng-Geul;Park, Byung-Joon;Kim, Hyun-Wook;Rhyu, Im-Joo
    • Applied Microscopy
    • /
    • v.40 no.4
    • /
    • pp.177-183
    • /
    • 2010
  • A focused ion beam (FIB) system produces a beam of positive ions (usually gallium) which are heavier than electrons and can be focused by electrostatic lenses into a spot on the specimen. With its ability milling of the specimen material by 10 to 100 nm with each pass of the beam, FIB is widely adopted in materials science, semiconductor industry, and ceramics research. Recently, FIB has been increasingly employed in the field of biomedical sciences. Here we provide a brief introduction to FIB and its applications for a wide variety of biomedical research. The surface of specimen can be in situ processed and quasi-real time visualized by two beam combination of FIB and field emission scanning electron microscope (FESEM). Due to its milling process, internal structures can be exposed and analyzed: yeast cells, fungus-inoculated wheat leaf, mannitol particles in inhalation aerosols, and oyster shell. Serial blockface tomography with the system kindles 3-dimensional reconstruction researches in the realm of nervous system and life sciences. Two-beam system of FIB/FESEM is a versatile tool to be utilized in the biomedical sciences, especially in 3-dimensional reconstruction studies.