Browse > Article

Effect of Graphite Mixing Method on Electrode Characteristics in Cathode Resynthesis of Lithium Battery  

Lee, Churl-Kyoung (School of Advanced Materials & System Eng., Kumoh National Institute of Technology)
Kim, Tae-Hyun (Resources Recycling R&D Center)
Publication Information
Resources Recycling / v.19, no.1, 2010 , pp. 27-32 More about this Journal
Abstract
To improve electronic conductivity of cathodic active materials of lithium ion battery, carbonaceous materials is usually added. New mixing method of abrasive milling has been investigated in mixing of graphite and $LiCoO_2$ powders. It would be expected that uniform mixing of graphite reduces capacity fading of cathode of lithium battery. Abrasion milled $LiCoO_2$ composite showed the best electrochemical performance as a cathode material with 1 wt% of graphite content, 300 rpm of milling speed, and 10 min of milling time. The improvement of the electrochemical performances such as cycleability and charge/discharge capacity retention would be mainly attributed to increase of the electronic conductivity and/or prevention of the active materials by uniform dispersion and coating of graphite on $LiCoO_2$.
Keywords
Lithium ion battery; Electrode resynthesis; Graphite; $LiCoO_2$; Abrasion; Mixing;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 T. Ohzuku, 1994: Developments and Perspective, Industrial Chemistry Library, Lithium Batteries-New Materials, G Pistoia(Editor), Elsevier, Amsterdam, 5, p. 239.
2 Aurbach, D., et al., 2002: On the Capacity Fading of LiCoO$_{2}$ Intercalation Electrodes: the Effect of Cycling, Storage, Temperature, and Surface Film Forming Additives, Electrochem. Acta, 47(27), pp. 4291-4306.   DOI   ScienceOn
3 Amatucci, G. G., Tarascon, J. M., and Klein, L. C., 1996: Cobalt Dissolution in LiCoO$_{2}$-based Non-aqueous Rechargeable Batteries, Solid State lonics, 3(1-2), pp. 167-173.
4 이철경, 양동효, 2001: 폐리튬이온전지로부터 유기금속의 회수, 공업화학회지, 12(8), pp. 890-895.
5 Reimers, J. N., Dahn, J. R., and von Sacken, U., 1993: Effects of Impurities on the Electrochemical Properties of LiCoO$_{2}$, J. Electrochem. Soc., 140, pp. 2752-2754.   DOI   ScienceOn
6 이철경, 박정길, 손정수, 2007: LiCoO$_{2}$의 재합성시 전극특성에 미치는 탄소의 영향, 자원리사이클링학회지, 16(6), pp. 10-19.
7 Thomas, M. G. S. R., Bruce, P. G., and Goodenough, J. B., 1986: AC Impedance of the Li$_{1-x}$CoO$_{2}$ Electrode, Solid State lonics, 18-19, pp. 794-798.   DOI   ScienceOn
8 Reimers, J. N. and Dahn, J. R., 1992: Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in Li$_{x}$CoO$_{2}$, J. Electrochem. Soc., 139, pp. 2091-2097.   DOI
9 이철경, 김태현, 2000: 폐리튬이온전지로부터 분리한 양극화물질의 침출, 자원리사이클링 학회지, 9(4), pp. 37-43.
10 이철경, 양동효, 김낙형, 2002: Oxalic acid 용액에서 LiCoO$_{2}$의 선택침출, 자원리사이클링학회지, 11(3), pp. 10-16.
11 Ohzuku, T., et al., 1993: Comparative Study of LiCoO$_{2}$, LiNi$_{1/2}Co$_{1/2}$O$_{2}$ and LiNiO$_{2}$ for 4 Volt Secondary Lithium Cells, Electrochim. Acta, 38(9), pp. 1159-1167.   DOI   ScienceOn
12 Lee, C. K. and Rhee, K.-I., 2003: Reductive Leaching of Cathodic Active Materials from Lithium Ion Battery Waste, Hydrometallurgy, 68, pp. 5-10.   DOI   ScienceOn
13 Chebiam, R. V., Kannan, A. M., Prado, F., and Manthriam, A., 2001: Comparison of the Chemical Stability of the High Energy Density Cathodes of Lithium-ion Batteries, Electrochem. Commun., 3(11), pp. 624-627.   DOI   ScienceOn
14 Lee, C. K. and Rhee, K.-I., 2002: Preparation of LiCoO$_{2}$ from Spent Lithium Ion Batteries, Journal of Power Sources, 109, pp. 17-21.   DOI   ScienceOn
15 Kim, J., et aI., 2005: Direct Carbon Black Coating on LiCoO$_{2}$ Cathode using Surfactant for High-density Li-ion Cell, J. Power Sources, 139, pp. 289-294.   DOI   ScienceOn
16 Chebiam, R. V., Prado, F., and Manthriam, A., 2002: Comparison of the Chemical Stability of Li$_{1-x}$CoO$_{2}$ and Li$_{1-x}Ni_{0.85}Co_{0.15}O_{2}$ Cathodes, J. Solid State Chem., 163(1), pp. 5-9.   DOI   ScienceOn