Browse > Article
http://dx.doi.org/10.4283/JKMS.2015.25.4.117

Properties of Exchange Bias Coupling Field and Coercivity Using the Micron-size Holes Formation Inside GMR-SV Film  

Bolormaa, Munkhbat (Department of Oriental Biomedical Engineering, Sangji University)
Khajidmaa, Purevdorj (Department of Oriental-western Biomedical Engineering, Sangji University)
Hwang, Do-Guwn (Department of Oriental Biomedical Engineering, Sangji University)
Lee, Sang-Suk (Department of Oriental Biomedical Engineering, Sangji University)
Lee, Won-Hyung (Department of Physics, Penn State University)
Rhee, Jang-Roh (Department of Nanophysics, Sookmyung Women's University)
Abstract
The holes with a diameter of $35{\mu}m$ inside the GMR-SV (giant magnetoresistance-spin valve) film were patterned by using the photolithography process and ECR (electron cyclotron resonance) Ar-ion milling. From the magnetoresistance curves of the GMR-SV film with holes measuring by 4-electrode method, the MR (magnetoresistance ratio) and MS (magnetic sensitivity) are almost same as the values of initial states. On other side hand, the $H_{ex}$ (exchange bias coupling field) and $H_c$ (coercivity) dominantly increased from 120 Oe and 10 Oe to 190 Oe and 41 Oe as increment of the number of holes inside GMR-SV film respectively. These results were shown to be attributed to major effect of EMD (easy magnetic domian) having a region positioned between two holes perpendicular to the sensing current. On the basis of this study, the fabrication of GMR-SV applying to the hole formation improved the magnetoresistance properties having the thermal stability and durability of bio-device.
Keywords
Electron cyclotron resonance (ECR); ion milling; hole; exchange bias coupling field; coercivity; easy magnetic domain (EMD);
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 J. G. Choi, D. G. Hwang, J. R. Rhee, and S. S. Lee, J. Kor. Phys. Soc. 6, 1954 (2013).
2 J. G. Choi, K. J. Park, and S. S. Lee, J. Magn. 17, 214 (2012).   DOI   ScienceOn
3 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).   DOI
4 P. Bruno and C. Chappert, "Magnetism and Structure in Systems of Reduced Dimension", p389-p399, Edited by R. F. C. Farrow et al., Plenum Press, New York (1993).
5 S. S. Lee and D. G. Hwang, J. Magn. 15, 17 (2010).   DOI   ScienceOn
6 J. M. Daughton, J. Magn. Magn. Mater. 192, 334 (1999).   DOI   ScienceOn
7 H. Kim, V. Reddy, K. W. Kim, I. Jeong, X. H. Hu, and C. G. Kim, J. Magn. 19, 10 (2014).   DOI   ScienceOn
8 G. Li, S. Sun, R. J. Wilson, R. L. White, N. Pourmand, and S. X. Wang, Sens. Actuators. A Phys. A126, 98 (2006).
9 B. M. de Boer, J. A. H. M. Kahlman, T. P. G. H. Jansen, H. Duric, and J. Veen, Biosens. Bioelectron. 22, 2366 (2006).
10 K. Yosida, Phys. Rev. 106, 893 (1957).   DOI
11 D. K. Wood, K. K. Ni, D. R. Schmidt, and A. N. Cleland, Sens. Actuators. A Phys. A120, 1 (2005).
12 J. G. Choi, D. G. Hwang, J. R. Rhee, and S. S. Lee, Thin Solid Films 519, 8394 (2011).   DOI   ScienceOn
13 P. Khajidmaa and S. S. Lee, J. Korean Magn. Soc. 23, 193 (2013).   DOI   ScienceOn
14 Y. J. Nam, T. Y. Lee, and S. H. Lim, J. Magn. 19, 232 (2014).   DOI   ScienceOn
15 W. H. Lee, D. G. Hwang, and S. S. Lee, J. Magn. 14, 18 (2009).   DOI   ScienceOn
16 D. W. Kim, J. H. Lee, M. J. Kim, and S. S. Lee, J. Magn. 14, 80 (2009).   DOI   ScienceOn
17 S. H. Park, K. S. Soh, D. G. Hwang, J. R. Rhee, and S. S. Lee, J. Magn. 13, 30 (2008).   DOI   ScienceOn