• Title/Summary/Keyword: 이선형 모델

Search Result 2,177, Processing Time 0.026 seconds

Two-Mode Nonlinear Combustion Instability Analysis (2-모드 비선형 연소 불안정성 해석)

  • 윤현걸
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.1
    • /
    • pp.41-49
    • /
    • 1998
  • A nonlinear mathematical model of longitudinal combustion instability appropriate for ramjets and augmenters was developed based on modal analysis. The model was limited to a two-mode formulation. The associated differential equations were solved both analytically and numerically. The two-mode nonlinear model is capable of predicting the bootstrapping effect which characterizes nonlinear velocity-sensitive combustion response. Also, parametric studies were performed.

  • PDF

Lie Group Theory based Lead-Lag Power System Stabilizer (Lie Group Theory에 기준한 Lead-Lag 전력계통안정화장치)

  • Lee, Sang-Seung;Li, Shan-Ying;Park, Jong-Keun;Moon, Sung-Il;Yoon, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.183-186
    • /
    • 2004
  • 본 논문에서는 Lie Group 및 Lie Transformation의 수학적인 근원을 분석하고 이를 비선형 제어기에 제공하였다. 제어기의 구성형태는 Lead-Lag와 LQR 관측기를 결합한 혼합형 비선형 전력계통안정화장치(NPSS)이다. 이 분석에 사용된 제어기는 첫째로 기존의 PSS type인 Lead-Lag 형태의 선형화 제어기이다. 둘째로 제안된 제어기는 Lie group theory를 적용하여 이를 상태변수에 반영한 Lead-Lag와 LQR 관측기를 결합한 것이다. 제안된 혼합형 비선형 전력계통안정화장치(NPSS)의 효과분석은 MATLAB을 이용하였다. 분석모델은 1기 4차 비선형 전력계통의 모델에 적용하였다.

  • PDF

Finite Element Simulation of Hysteretic Behavior of Structural Stainless Steel under Cyclic Loading (반복하중을 받는 스테인리스강의 이력거동 해석모델 개발)

  • Jeon, Jun-Tai
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.186-197
    • /
    • 2019
  • Purpose: This study intends to develop a nonlinear cyclic plasticity damage model in the framework of finite element formulation, which is capable of taking large deformation effects into account, in order to accurately predict the hysteretic behavior of stainless steel structures. Method: The new cyclic constitutive equations that utilize the combined isotropic-kinematic hardening rule for plastic deformation is incorporated into the damage mechanic model in conjunction with the large strain formulation. The damage growth law is based on the experimental observations that the evolution of microvoids yields nonlinear damage accumulation with plastic deformation. The damage model parameters and the procedure for their identification are presented. Results and Conclusion: The proposed nonlinear damage model has been verified by simulating uniaxial strain-controlled monotonic and cyclic loading tests, and successfully applied to a thin-walled stainless steel pipe subjected to constant and alternating strain-controlled cyclic loadings.

A Method of Applying Work Relationships for a Linear Scheduling Model (선형 공정계획 모델의 작업 관계성 적용 방법)

  • Ryu, Han-Guk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.31-39
    • /
    • 2010
  • As the linear scheduling method has been used since the Empire State Building linear schedule in 1929, it is being applied in various fields, such as construction and manufacturing. When addressing concurrent critical paths occurring in a linear construction schedule, empirical researches have stressed resource management, which should be applied for optimizing workflow, ensuring flexible work productivity and continuous resource allocation. However, work relationships have been usually overlooked in making the linear schedule from an existing network schedule. Therefore, this research analyzes the previous researches related to the linear scheduling model, and then proposes a method that can be applied for adopting the relationships of a network schedule to the linear schedule. To this end, this research considers the work relationships occurring in changing a network schedule into a linear schedule, and then confirms the activities movement phenomenon of linear schedule due to workspace change, such as physical floors change. As a result, this research can be used as a basic research in order to develop a system generating a linear schedule from a network schedule.

Application of bifurcation control to voltage collapse in a model power system (모델 전력 시스템의 전압붕괴 현상에 분기이론 제어 기법의 적용)

  • Kim, Tai-Hyun;Oh, Tas-Kyoo;Kook, Kyung-Soo;Moon, Young-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.196-198
    • /
    • 2002
  • 이 논문에서는 모델 전력 시스템 전압붕괴 현상에 대한 선형과 비선형 제어 기법을 제안하였다. 선형 제어기를 통한 전압붕괴의 지연을 성취하였고 비선형 제어 기법을 통한 새로운 주기해의 안정을 성취하였다.

  • PDF

Analysis on the Interfacial Bond-Slip Relationship between ear Surface-Mounted FRP Plate and Concrete (콘크리트내 표면매입 보강된 FRP 판과 콘크리트 사이의 착-미끄러짐 관계 해석)

  • Seo, Soo-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.79-86
    • /
    • 2014
  • In this paper, a stress transfer mechanism between near surface-mounted (NSM) fiber reinforced polymer (FRP) plate and concrete was investigated and a reliable analytical procedure for it was presented by using bilinear bond-slip model simulating the bond behavior of NSM FRP plate. As a result, critical values in the bi-linear model such as maximum shear strength, slip at that time and failure slip at the initiation of softening de-bonding were suggested for being used in the differential equation considering he interfacial characteristic between NSM FRP and concrete. Also, it was found that the bond-slip behavior could be suitably redicted by using the proposed procedure even in the case of various bond lengths from the comparison with bond test result.

Performance Assessment of Deteriorated Reinforced Concrete Bridge Columns (열화된 철근콘크리트 교각의 성능평가)

  • Kim, Tae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.45-54
    • /
    • 2011
  • This paper presents a nonlinear finite element analysis procedure for the performance assessment of deteriorated reinforced concrete bridge columns. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used to analyze these reinforced concrete structures. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. Advanced deteriorated material models are developed to predict behaviors of deteriorated reinforced concrete bridge columns. The proposed numerical method for the performance of damaged reinforced concrete bridge columns is verified by comparison with reliable experimental results.

Modeling and Equalization for Super-RENS Systems Based on the Canonical Piecewise-Linear and Volterra Models (정규 구간선형 모델과 볼테라 모델을 기반한 Super-RENS 시스템 모델링 및 등화)

  • Seo, Man-Jung;Shim, Hee-Sung;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.18-24
    • /
    • 2010
  • A correct and accurate model of optical data storage systems is very important in development and performance evaluation of various data detection algorithms. In this paper, we present an nonlinear modeling scheme of a super-resolution near-field structure (Super-RENS) read-out signal using the canonical piecewise-linear (PWL) and the second-order Volterra models. Nonlinear equalizers may be developed on the basis of the information obtained from this nonlinear modeling. To mitigate the nonlinear inter-symbol interference (ISI), we proposed a new nonlinear equalizer for Super-RENS discs. Its validity is tested with the RF signal samples obtained from a Super-RENS disc. The experiment results verified the possibility that the canonical PWL and the second-older Volterra models can be utilized for nonlinear modeling of Super-RENS systems. The proposed equalizers are superior to the one without equalization in terms of bit error rate (BER).

Nonlinear Dynamic Analysis of Reinforced Concrete Shells Using Layered Elements with Drilling DOF (회전자유도를 갖는 층상화 요소를 이용한 철근콘크리트 쉘구조의 비선형 동적해석)

  • 김태훈;이상국;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.21-27
    • /
    • 2001
  • In this paper, a nonlinear finite element procedure is presented for the dynamic analysis of reinforced concrete shells. A computer program, named RCAHEST(reinforced concrete analysis in higher evaluation system technology), for the analysis of reinforced concrete structures was used. A 4-node flat shell element will drilling rotational stiffness is used for spatial discretization. The layered approach is used to discretize behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. Solution of the equations of motion is obtained by numerical integration using Hilber-Hughes-Taylor(HHT) algorithm. The proposed numerical method for the nonlinear dynamic analysis of reinforced concrete shells is verified by comparison with reliable analytical results.

  • PDF

Parameter Identification of Nonlinear Dynamic Systems using Frequency Domain Volterra model (비선형 동적 시스템의 파라미터 산정을 위한 주파수 영역 볼테라 모델의 이용)

  • Paik, In-Yeol;Kwon, Jang-Sub
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.33-42
    • /
    • 2005
  • Frequency domain Volterra model is applied to nonlinear parameter identification procedure for dynamic systems modeled by nonlinear function. The frequency domain Volterra kernels, which correspond io linear, quadratic, and cubic transfer functions in lime domain, are incorporated in nonlinear parametric identification procedure. The nonlinear transfer functions, which can be derived from the Volterra series representation of the nonlinear differential equation of the system by Schetzen's method(1980), are directly used for modeling input output relation. The error is defined by the difference between the observed output and the estimated output which is calculated by substituting the observed input to nonlinear frequency domain model. The system parameters are searched by minimizing the error. Volterra model guarantees enough accuracy and convergence and the estimated coefficients have a good agreement with their actual values not only in the linear frequency region but also in the legion where the $2^{nd}\;or\;3^{rd}$ order nonlinearity is dominant.