• Title/Summary/Keyword: 이상탐지 시스템

Search Result 576, Processing Time 0.028 seconds

Visualization of Anomaly Detection in Hadoop System Information (하둡 시스템 정보의 이상탐지를 위한 시각화)

  • Yang, Seokwoo;Son, Siwoon;Gil, Myeong-Seon;Moon, Yang-Sae;Won, Hee-Sun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.702-705
    • /
    • 2015
  • 본 논문에서는 하듐 환경에서 시스템 정보의 이상탐지를 위한 시각화 기능을 설계 및 구현한다. 제안한 이상탐지 시각화 기능은 크게 세 단계로 구분된다. 먼저, 각 노드로부터 시스템 로그 데이터(캐시 및 메인 메모리)를 수집하여 하이브(Hive) 저장한다. 그리고 저장한 데이터에 3-시그마 규칙을 적용하여 이상탐지를 수행한 후 관계형 데이터베이스에 적합하도록 재가공한다. 마지막으로, 스쿱(Sqoop)을 통해 RDBMS(MariaDB)에 이상탕지 결과를 저장하고, DHTMLX 차트 라이브러리를 사용하여 이를 시각화한다. 시각화 결과, 로그 데이터의 이상탐지와 데이터간의 상관관계를 직관적으로 이해할 수 있게 되었다.

Anomaly Detection Technique of Log Data Using Hadoop Ecosystem (하둡 에코시스템을 활용한 로그 데이터의 이상 탐지 기법)

  • Son, Siwoon;Gil, Myeong-Seon;Moon, Yang-Sae
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.2
    • /
    • pp.128-133
    • /
    • 2017
  • In recent years, the number of systems for the analysis of large volumes of data is increasing. Hadoop, a representative big data system, stores and processes the large data in the distributed environment of multiple servers, where system-resource management is very important. The authors attempted to detect anomalies from the rapid changing of the log data that are collected from the multiple servers using simple but efficient anomaly-detection techniques. Accordingly, an Apache Hive storage architecture was designed to store the log data that were collected from the multiple servers in the Hadoop ecosystem. Also, three anomaly-detection techniques were designed based on the moving-average and 3-sigma concepts. It was finally confirmed that all three of the techniques detected the abnormal intervals correctly, while the weighted anomaly-detection technique is more precise than the basic techniques. These results show an excellent approach for the detection of log-data anomalies with the use of simple techniques in the Hadoop ecosystem.

A Rule-based Intrusion Detection System with Multi-Level Structures (규칙기반 다단계 침입 탐지 시스템)

  • Min, Uk-Ki;Choi, Jong-Cheon;Cho, Seong-Je
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.965-968
    • /
    • 2005
  • 본 논문에서는 보안 정책 및 규칙에 기반을 둔 네트워크 포트 기반의 오용침입 탐지 기능 및 센서 객체 기반의 이상침입 탐지 기능을 갖춘 리눅스 서버 시스템을 제안 및 구현한다. 제안한 시스템은 먼저 시스템에 사용하는 보안 정책에 따른 규칙을 수립한다. 이러한 규칙에 따라 정상적인 포트들과 알려진 공격에 사용되고 있는 포트번호들을 커널에서 동적으로 관리하면서, 등록되지 않은 새로운 포트에도 이상탐지를 위해 공격 유형에 대하여 접근제어 규칙을 적용하여 이상 침입으로 판단될 경우 접근을 차단한다. 알려지지 않은 이상침입 탐지를 위해서는 주요 디렉토리마다 센서 파일을, 주요 파일마다 센서 데이터를 설정하여 센서 객체가 접근될 때마다 감사로그를 기록하면서, 이들 센서 객체에 대해 불법적인 접근이 발생하면 해당 접근을 불허한다. 본 시스템은 보안정책별 규칙에 따라 다단계로 구축하여 특정 침입에 대한 더욱 향상된 접근제어를 할 수 있다.

  • PDF

Normal Behavior Profiling based on Bayesian Network for Anomaly Intrusion Detection (이상 침입 탐지를 위한 베이지안 네트워크 기반의 정상행위 프로파일링)

  • 차병래;박경우;서재현
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.1
    • /
    • pp.103-113
    • /
    • 2003
  • Program Behavior Intrusion Detection Technique analyses system calls that called by daemon program or root authority, constructs profiles. and detectes anomaly intrusions effectively. Anomaly detections using system calls are detected only anomaly processes. But this has a Problem that doesn't detect affected various Part by anomaly processes. To improve this problem, the relation among system calls of processes is represented by bayesian probability values. Application behavior profiling by Bayesian Network supports anomaly intrusion informations . This paper overcomes the Problems of various intrusion detection models we Propose effective intrusion detection technique using Bayesian Networks. we have profiled concisely normal behaviors using behavior context. And this method be able to detect new intrusions or modificated intrusions we had simulation by proposed normal behavior profiling technique using UNM data.

  • PDF

A Criterion on Profiling for Anomaly Detection (이상행위 탐지를 위한 프로파일링 기준)

  • 조혁현;정희택;김민수;노봉남
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.544-551
    • /
    • 2003
  • Internet as being generalized, intrusion detection system is needed to protect computer system from intrusions synthetically. We propose a criterion on profiling for intrusion detection system using anomaly detection. We present the cause of false positive on profiling and propose anomaly method to control this. Finally, we propose similarity function to decide whether anomaly action or not for user pattern using pattern database.

Design of Anomaly Detection System Based on Big Data in Internet of Things (빅데이터 기반의 IoT 이상 장애 탐지 시스템 설계)

  • Na, Sung Il;Kim, Hyoung Joong
    • Journal of Digital Contents Society
    • /
    • v.19 no.2
    • /
    • pp.377-383
    • /
    • 2018
  • Internet of Things (IoT) is producing various data as the smart environment comes. The IoT data collection is used as important data to judge systems's status. Therefore, it is important to monitor the anomaly state of the sensor in real-time and to detect anomaly data. However, it is necessary to convert the IoT data into a normalized data structure for anomaly detection because of the variety of data structures and protocols. Thus, we can expect a good quality effect such as accurate analysis data quality and service quality. In this paper, we propose an anomaly detection system based on big data from collected sensor data. The proposed system is applied to ensure anomaly detection and keep data quality. In addition, we applied the machine learning model of support vector machine using anomaly detection based on time-series data. As a result, machine learning using preprocessed data was able to accurately detect and predict anomaly.

An Adaptive Anomaly Detection Model Design based on Artificial Immune System in Central Network (중앙 집중형 망에서 인공면역체계 기반의 적응적 망 이상 상태 탐지 모델 설계)

  • Yoo, Kyoung-Min;Yang, Won-Hyuk;Lee, Sang-Yeol;Jeong, Hye-Ryun;So, Won-Ho;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3B
    • /
    • pp.311-317
    • /
    • 2009
  • The traditional network anomaly detection systems execute the threshold-based detection without considering dynamic network environments, which causes false positive and limits an effective resource utilization. To overcome the drawbacks, we present the adaptive network anomaly detection model based on artificial immune system (AIS) in centralized network. AIS is inspired from human immune system that has learning, adaptation and memory. In our proposed model, the interaction between dendritic cell and T-cell of human immune system is adopted. We design the main components, such as central node and router node, and define functions of them. The central node analyzes the anomaly information received from the related router nodes, decides response policy and sends the policy to corresponding nodes. The router node consists of detector module and responder module. The detector module perceives the anomaly depending on learning data and the responder module settles the anomaly according to the policy received from central node. Finally we evaluate the possibility of the proposed detection model through simulation.

Research on Data Tuning Methods to Improve the Anomaly Detection Performance of Industrial Control Systems (산업제어시스템의 이상 탐지 성능 개선을 위한 데이터 보정 방안 연구)

  • JUN, SANGSO;Lee, Kyung-ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.4
    • /
    • pp.691-708
    • /
    • 2022
  • As the technology of machine learning and deep learning became common, it began to be applied to research on anomaly(abnormal) detection of industrial control systems. In Korea, the HAI dataset was developed and published to activate artificial intelligence research for abnormal detection of industrial control systems, and an AI contest for detecting industrial control system security threats is being conducted. Most of the anomaly detection studies have been to create a learning model with improved performance through the ensemble model method, which is applied either by modifying the existing deep learning algorithm or by applying it together with other algorithms. In this study, a study was conducted to improve the performance of anomaly detection with a post-processing method that detects abnormal data and corrects the labeling results, rather than the learning algorithm and data pre-processing process. Results It was confirmed that the results were improved by about 10% or more compared to the anomaly detection performance of the existing model.

Design and Implementation of high speed Network Intrusion Detection System using Network Processor (네트워크 프로세서를 이용한 초고속 침입 탐지 시스템 설계 및 구현)

  • 조혜영;김주홍;장종수;김대영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10e
    • /
    • pp.571-573
    • /
    • 2002
  • 네트워크 관련 기술들이 테라급으로 급속히 발전하고 있는데 비해, 상대적으로 네트워크의 발전 속도에 뒤지고 있는 네트워크 침입 탐지 시스템의 성능 향상을 위해서, 기존의 소프트웨어 방식으로 구현된 침입 탐지 시스템을 고속의 패킷 처리에 뛰어난 성능을 가지고 있는 네트워크 프로세서를 이용하여 재설계 및 구현하였다. 네트워크 침입 탐지 시스템에서 대부분의 수행시간을 차지하는 네트워크 패킷을 분류하고, 이상 패킷을 탐지하는 기능을 인텔의 IXP1200 네트워크 프로세서의 마이크로엔진이 고속으로 패킷을 처리하게 함으로써 네트워크 침입 탐지 시스템의 성능 향상을 도모하였다.

  • PDF

Anomaly Detection Method Based on The False-Positive Control (과탐지를 제어하는 이상행위 탐지 방법)

  • 조혁현;정희택;김민수;노봉남
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.4
    • /
    • pp.151-159
    • /
    • 2003
  • Internet as being generalized, intrusion detection system is needed to protect computer system from intrusions synthetically. We propose an intrusion detection method to identify and control the contradiction on self-explanation that happen at profiling process of anomaly detection methodology. Because many patterns can be created on profiling process with association method, we present effective application plan through clustering for rules. Finally, we propose similarity function to decide whether anomaly action or not for user pattern using clustered pattern database.