Proceedings of the Korea Information Processing Society Conference
/
2015.04a
/
pp.702-705
/
2015
본 논문에서는 하듐 환경에서 시스템 정보의 이상탐지를 위한 시각화 기능을 설계 및 구현한다. 제안한 이상탐지 시각화 기능은 크게 세 단계로 구분된다. 먼저, 각 노드로부터 시스템 로그 데이터(캐시 및 메인 메모리)를 수집하여 하이브(Hive) 저장한다. 그리고 저장한 데이터에 3-시그마 규칙을 적용하여 이상탐지를 수행한 후 관계형 데이터베이스에 적합하도록 재가공한다. 마지막으로, 스쿱(Sqoop)을 통해 RDBMS(MariaDB)에 이상탕지 결과를 저장하고, DHTMLX 차트 라이브러리를 사용하여 이를 시각화한다. 시각화 결과, 로그 데이터의 이상탐지와 데이터간의 상관관계를 직관적으로 이해할 수 있게 되었다.
In recent years, the number of systems for the analysis of large volumes of data is increasing. Hadoop, a representative big data system, stores and processes the large data in the distributed environment of multiple servers, where system-resource management is very important. The authors attempted to detect anomalies from the rapid changing of the log data that are collected from the multiple servers using simple but efficient anomaly-detection techniques. Accordingly, an Apache Hive storage architecture was designed to store the log data that were collected from the multiple servers in the Hadoop ecosystem. Also, three anomaly-detection techniques were designed based on the moving-average and 3-sigma concepts. It was finally confirmed that all three of the techniques detected the abnormal intervals correctly, while the weighted anomaly-detection technique is more precise than the basic techniques. These results show an excellent approach for the detection of log-data anomalies with the use of simple techniques in the Hadoop ecosystem.
Proceedings of the Korea Information Processing Society Conference
/
2005.11a
/
pp.965-968
/
2005
본 논문에서는 보안 정책 및 규칙에 기반을 둔 네트워크 포트 기반의 오용침입 탐지 기능 및 센서 객체 기반의 이상침입 탐지 기능을 갖춘 리눅스 서버 시스템을 제안 및 구현한다. 제안한 시스템은 먼저 시스템에 사용하는 보안 정책에 따른 규칙을 수립한다. 이러한 규칙에 따라 정상적인 포트들과 알려진 공격에 사용되고 있는 포트번호들을 커널에서 동적으로 관리하면서, 등록되지 않은 새로운 포트에도 이상탐지를 위해 공격 유형에 대하여 접근제어 규칙을 적용하여 이상 침입으로 판단될 경우 접근을 차단한다. 알려지지 않은 이상침입 탐지를 위해서는 주요 디렉토리마다 센서 파일을, 주요 파일마다 센서 데이터를 설정하여 센서 객체가 접근될 때마다 감사로그를 기록하면서, 이들 센서 객체에 대해 불법적인 접근이 발생하면 해당 접근을 불허한다. 본 시스템은 보안정책별 규칙에 따라 다단계로 구축하여 특정 침입에 대한 더욱 향상된 접근제어를 할 수 있다.
Journal of the Korea Society of Computer and Information
/
v.8
no.1
/
pp.103-113
/
2003
Program Behavior Intrusion Detection Technique analyses system calls that called by daemon program or root authority, constructs profiles. and detectes anomaly intrusions effectively. Anomaly detections using system calls are detected only anomaly processes. But this has a Problem that doesn't detect affected various Part by anomaly processes. To improve this problem, the relation among system calls of processes is represented by bayesian probability values. Application behavior profiling by Bayesian Network supports anomaly intrusion informations . This paper overcomes the Problems of various intrusion detection models we Propose effective intrusion detection technique using Bayesian Networks. we have profiled concisely normal behaviors using behavior context. And this method be able to detect new intrusions or modificated intrusions we had simulation by proposed normal behavior profiling technique using UNM data.
Journal of the Korea Institute of Information and Communication Engineering
/
v.7
no.3
/
pp.544-551
/
2003
Internet as being generalized, intrusion detection system is needed to protect computer system from intrusions synthetically. We propose a criterion on profiling for intrusion detection system using anomaly detection. We present the cause of false positive on profiling and propose anomaly method to control this. Finally, we propose similarity function to decide whether anomaly action or not for user pattern using pattern database.
Internet of Things (IoT) is producing various data as the smart environment comes. The IoT data collection is used as important data to judge systems's status. Therefore, it is important to monitor the anomaly state of the sensor in real-time and to detect anomaly data. However, it is necessary to convert the IoT data into a normalized data structure for anomaly detection because of the variety of data structures and protocols. Thus, we can expect a good quality effect such as accurate analysis data quality and service quality. In this paper, we propose an anomaly detection system based on big data from collected sensor data. The proposed system is applied to ensure anomaly detection and keep data quality. In addition, we applied the machine learning model of support vector machine using anomaly detection based on time-series data. As a result, machine learning using preprocessed data was able to accurately detect and predict anomaly.
The Journal of Korean Institute of Communications and Information Sciences
/
v.34
no.3B
/
pp.311-317
/
2009
The traditional network anomaly detection systems execute the threshold-based detection without considering dynamic network environments, which causes false positive and limits an effective resource utilization. To overcome the drawbacks, we present the adaptive network anomaly detection model based on artificial immune system (AIS) in centralized network. AIS is inspired from human immune system that has learning, adaptation and memory. In our proposed model, the interaction between dendritic cell and T-cell of human immune system is adopted. We design the main components, such as central node and router node, and define functions of them. The central node analyzes the anomaly information received from the related router nodes, decides response policy and sends the policy to corresponding nodes. The router node consists of detector module and responder module. The detector module perceives the anomaly depending on learning data and the responder module settles the anomaly according to the policy received from central node. Finally we evaluate the possibility of the proposed detection model through simulation.
Journal of the Korea Institute of Information Security & Cryptology
/
v.32
no.4
/
pp.691-708
/
2022
As the technology of machine learning and deep learning became common, it began to be applied to research on anomaly(abnormal) detection of industrial control systems. In Korea, the HAI dataset was developed and published to activate artificial intelligence research for abnormal detection of industrial control systems, and an AI contest for detecting industrial control system security threats is being conducted. Most of the anomaly detection studies have been to create a learning model with improved performance through the ensemble model method, which is applied either by modifying the existing deep learning algorithm or by applying it together with other algorithms. In this study, a study was conducted to improve the performance of anomaly detection with a post-processing method that detects abnormal data and corrects the labeling results, rather than the learning algorithm and data pre-processing process. Results It was confirmed that the results were improved by about 10% or more compared to the anomaly detection performance of the existing model.
Proceedings of the Korean Information Science Society Conference
/
2002.10e
/
pp.571-573
/
2002
네트워크 관련 기술들이 테라급으로 급속히 발전하고 있는데 비해, 상대적으로 네트워크의 발전 속도에 뒤지고 있는 네트워크 침입 탐지 시스템의 성능 향상을 위해서, 기존의 소프트웨어 방식으로 구현된 침입 탐지 시스템을 고속의 패킷 처리에 뛰어난 성능을 가지고 있는 네트워크 프로세서를 이용하여 재설계 및 구현하였다. 네트워크 침입 탐지 시스템에서 대부분의 수행시간을 차지하는 네트워크 패킷을 분류하고, 이상 패킷을 탐지하는 기능을 인텔의 IXP1200 네트워크 프로세서의 마이크로엔진이 고속으로 패킷을 처리하게 함으로써 네트워크 침입 탐지 시스템의 성능 향상을 도모하였다.
Journal of the Korea Institute of Information Security & Cryptology
/
v.13
no.4
/
pp.151-159
/
2003
Internet as being generalized, intrusion detection system is needed to protect computer system from intrusions synthetically. We propose an intrusion detection method to identify and control the contradiction on self-explanation that happen at profiling process of anomaly detection methodology. Because many patterns can be created on profiling process with association method, we present effective application plan through clustering for rules. Finally, we propose similarity function to decide whether anomaly action or not for user pattern using clustered pattern database.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.