• Title/Summary/Keyword: 이산화탄소 포집

Search Result 233, Processing Time 0.027 seconds

Effect of Carbonic Anhydrase on CO2 Absorption in Amine Solutions for CO2 Capture (CO2 포집용 아민 흡수제에서 탄산무수화 효소가 CO2 흡수에 미치는 영향)

  • Lee, In-Young;Kwak, No-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.11
    • /
    • pp.607-612
    • /
    • 2017
  • The effect of carbonic anhydrase on $CO_2$ absorption rates and the heat of reaction were evaluated in various amine solutions for post combustion $CO_2$ capture process. The $CO_2$ absorption rate was analyzed in 30 wt% MEA, AMP, DMEA, MDEA aqueous solutions with and without carbonic anhydrase (250 mg/L) from bovine erythrocyte. $CO_2$ absorption rates were increased in all solutions with carbonic anhydrase. The effect of carbonic anhydrase on absorption rates was more in tertiary amine (DMEA and MDEA) solutions than in primary amine (MEA) and hindered amine (AMP) solutions. The heat of reaction of MEA, DMEA, MDEA aqueous solutions with and without carbonic anhydrase were measured using reaction calorimeter. Carbonic anhydrase decreased the heat of absorption in all solutions. The results suggested that tertiary amines that have the excellent desorption ability were suitable for applying carbonic anhydrase to the post combustion $CO_2$ capture process and the effect of carbonic anhydrase was best in MDEA solution.

Usable Capacity for CO2 capture and storage in MOFs (금속 유기 골격체를 활용한 사용 가능한(Usable capacity) 이산화탄소 포집 연구)

  • Park, Seoha;Oh, Hyunchul;Jang, Haenam
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.80-85
    • /
    • 2018
  • Usable capacity is one of the most important parameters for evaluating the performance of an adsorbent for $CO_2$ capture from flue gas streams. In the pressure swing adsorption (PSA) process, the usable capacity is calculated as the difference between the quantity adsorbed in flue gas at high pressure (ca. 20 bar) and the quantity adsorbed at lower purge pressure (ca. 2 bar). In this paper, two stereo-types of metal-organic framework (MOF) were evaluated as an promising adsorbent for $CO_2$ capture: flexible structured MOF (MIL-53) and MOF possessing strong binding sites (MOF-74). The results showed that a total $CO_2$ capture capacity is strongly related to the specific surface area and heat of adsorption, revealing high uptake in MOF-74. However, the usable capacity was more pronounced in MIL-53 due to a structural transition.

Carbon Reduction Technology Applying the Surfactant and Carbon Dioxide Sequential Injection (계면활성제 및 이산화탄소 연속 주입을 활용한 탄소 저감 기술)

  • Seokgu Gang;Jongwon Jung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.3
    • /
    • pp.5-11
    • /
    • 2024
  • Promising geological structures for carbon dioxide capture and subsurface storage include aquifers, depleted reservoirs, and gas fields. Among these, aquifers are gaining attention due to their potential for storing significant amounts of carbon dioxide compared to other geological structures. Therefore, there is a growing interest in enhancing carbon dioxide storage efficiency by understanding the characteristics of aquifers and developing technologies tailored to their properties. In this study, the storage efficiency of carbon dioxide injection following surfactant pre-injection into porous micro-models was evaluated. The results indicate that as the concentration of the surfactant solution injected prior to carbon dioxide injection increases, storage efficiency improves. Conversely, lower concentrations require more surfactant injection to enhance storage efficiency. Furthermore, under identical surfactant concentration conditions, the storage efficiency from surfactant pre-injection prior to supercritical carbon dioxide injection is approximately 30% lower compared to surfactant-co-solvent substitution as observed in previous studies. However, under the maximum concentration conditions investigated in this study, similar storage efficiencies to those of previous studies were achieved. These findings are expected to guide concentration determinations for surfactant application aimed at enhancing carbon dioxide storage efficiency in aquifers in future studies.

Preliminary Design of a Deep-sea Injection System for Carbon Dioxide Ocean Sequestration (이산화탄소 해양격리 심해주입시스템의 초기설계)

  • Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo;Yeu, Tae-Kyeong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.265-268
    • /
    • 2006
  • The preliminary design of a deep-sea injection system for carbon dioxide ocean sequestration is performed. Common functional requirements for a deep-sea injection system of mid-depth type and lake type are determined, Liquid transport system, liquid storage system and liquid injection system are conceptually determined for the functional requirements. For liquid injection system, the control of flow rate and temperature of liquid $CO_2$ in the injection pipe is needed in the view of internal flow. The function of depressing VIV(Vortex Induced Vibration) is also required in the view of dynamic stability of the injection pipe. A case study is performed for $CO_2$ sequestration capacity of 10 million tons per year. In this study, the total number of injection ships, the flow rate of liquid $CO_2$ and the configuration of a injection pipe are designed. The static structural analysis of the injection pipe is also performed. Finally the preliminary design of a deep-sea injection system is proposed.

  • PDF

Characteristics of Carbon Dioxide Reduction in the Gliding Arc Plasma Discharge (글라이딩 아크 플라즈마 방전에 의한 이산화탄소 저감 특성)

  • Lim, Mun Sup;Kim, Seung Ho;Chun, Young Nam
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.205-209
    • /
    • 2015
  • CCU (Carbon Capture & Utilization) has a potential technology for the reduction and usage of carbon dioxide which is greenhouse gas emitting from a fossil fuel buring. To decompose the carbon dioxide, a three phase gliding arc plasma-catalytic reactor was designed and manufactured. Experiments of carbon dioxide reduction was performed by varying the gas flow rate with feeding the $CO_2$ only as well as the input power, the catalyst type and steam supply with respect to the injection of the mixture of $CO_2$ and $CH_4$. The $CO_2$ decomposition rate was 7.9% and the energy efficiency was $0.0013L/min{\cdot}W$ at a $CO_2$ flow rate of 12 L/min only. Carbon monoxide and oxygen was generated in accordance with the destruction of carbon dioxide. When the injection ratio of $CH_4/CO_2$ reached 1.29, the $CO_2$ destruction and $CH_4$ conversion rates were 37.8% and 56.6% respectively at a power supply of 0.76 kW. During the installation of $NiO/Al_2O_3$ catalyst bed, the $CO_2$ destruction and $CH_4$ conversion rates were 11.5% and 9.9% respectively. The steam supply parameter do not have any significant effects on the carbon dioxide decomposition.

Design and evaluation of continuous reaction system for methane reforming and hydrogen separation using nanoporous materials (나노기공성 물질을 이용한 메탄개질 및 수소분리용 연속반응시스템 설계 및 평가)

  • Bae, Jong-Soo;Park, Joo-Won;Kim, Jae-Ho;Lee, Jae-Goo;Choi, Young-Chan;Han, Choon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.231-231
    • /
    • 2010
  • 아직까지 국내에서 사용하는 대부분의 에너지는 화석연료에 의존하고 있다. 지하자원에서 나오는 석탄, 석유와 같은 화석연료는 다른 에너지원에 비해 운송이 간편하고 쉽게 이용할 수 있는 장점이 있지만, 환경오염의 문제성과 오일가상승, 자원의양 및 저장장소가 한정되어 있다는 단점을 가지고 있다. 이에 따라 수소와 같은 대체에너지를 이용하여 환경오염을 예방하고 무한히 사용할 수 있는 에너지원을 개발하기 위한 대체 방안들이 연구되고 있다. 폐기물 가스화시 발생되는 합성가스(CO, $CO_2$, $CH_4$, $H_2$) 내 일차로 생성된 일산화탄소는 수증기와 반응함으로써 이산화탄소로 전환이 가능하다. 잔류 메탄은 이산화탄소를 이용하여 개질함으로써 합성가스내 수소농도를 높일 수 있다. 전환된 잔류가스(CO, $CO_2$, $H_2$)내 일산화탄소는 산소를 이용하여 이산화탄소로 산화시킬 수 있으며, 산화된 이산화탄소는 흡착제를 이용하여 제거가 가능하다. 본 연구에서는 실제 가스화시 발생되는 합성가스를 이용하기 위하여, RPF가스화시 발생되는 합성가스를 직접 포집하여 실험을 진행하였다. 합성가스내 소량의 메탄은 니켈촉매를 이용하여 수소로 전화시켰으며, 잔류하는 일산화탄소는 백금촉매, 이산화탄소는 탄산나트륨 흡착제를 이용하여 연속적으로 제거함으로써 순수한 수소를 제공하였다.

  • PDF

Artificial Photosynthesis System Containing CO2 Conversion Process (이산화탄소 변환 과정이 포함된 인공 광합성 시스템)

  • Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.63-68
    • /
    • 2018
  • This paper presents an integrated photochemical reaction system (i.e., an artificial leaf) that uses earth-abundant catalysts for artificial photosynthesis with a carbon dioxide ($CO_2$) fixation process. The performance of the system was investigated in terms of the energy capture and conversion capabilities. A wireless configuration was achieved by directly doping cobalt oxide as an oxygen-evolving catalyst for water splitting reaction on the illuminated surface of photovoltaic (PV) cell, as well as molybdenum disulfide ($MoS_2$) as an efficient catalyst for $CO_2$ reduction on the back substrate surfaces of the PV cell. The system produces hydrogen and carbon monoxide (CO) as sustainable fuels (i.e., synthesis gas) at around 4.5% efficiency, which implies more than 75% catalytic efficiency at the cathode. The process of solar-driven $CO_2$ conversion and water-splitting reaction is contained in one system, which is one step closer to the successful realization of artificial photosynthesis.

Characterization of Glycine Metal Salts for $CO_2$ Absorption (이산화탄소 흡수를 위한 글리신 금속염의 특성 연구)

  • Lim, Yun-Hui;Park, Young Koo;Jo, Young-Min
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.284-288
    • /
    • 2012
  • This work deals with the chemical characterization of glycine aqueous solution in $CO_2$ absorption. Three alkali elements were impregnated into the glycine in order to facilitate the formation of amino functionalities. The analysis by IR revealed the transformation of ammonium ions to the amino group. In addition, the NMR analysis showed that the substitution of metal cations to the chemical shift of hydrogen and carbon atoms in glycine; in order of lithium glycinate, sodium glycinate and potassium glycinate depending on the electro negativity. Meanwhile, the $CO_2$ absorption at room temperature was the highest in primary amine solution, but at the increasing temperature sodium glycinate could capture more $CO_2$ than that of the pure amine solution.

Gas Hydrate Phase Equilibria of $CO_2+H_2$ Mixture in Silica Gel Pores for the Development of Pre-combustion Capture (연소 전 이산화탄소 회수기술을 위한 실리카겔 공극 내에서의 이산화탄소+수소 혼합가스 하이드레이트의 상평형)

  • Kang, Seong-Pil;Jang, Won-Ho;Jo, Wan-Keun
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.258-264
    • /
    • 2009
  • Thermodynamic measurements were performed to show the possibility of recovering $CO_2$ from fuel gas (the mixture of $CO_2$ and $H_2$) by forming gas hydrates with water where water was dispersed in the pores of silica gel particles having nominal 100 nm of pore diameter. The hydrate-phase equilibria for the ternary $CO_2+H_2$+water in pores were measured and $CO_2$ concentrations in vapor and hydrate phase were determined under the hydrate-vapor two phase region at constant 274.15 K. It was shown that the inhibition effect appeared due to silica gel pores, and the corresponding equilibrium dissociation pressures became higher than those of bulk water hydrates at a specific temperature. In addition, direct measurement of $CO_2$ content in the hydrate phase showed that the retrieved gas from the dissociation of hydrate contained more than 95 mol% of $CO_2$ when 42 mol% of $CO_2$ and balanced Hz mixture was applied. Compared with data obtained in case of bulk water hydrates, which showed just 83 mol% of $CO_2$ where 2-stage hydrate slurry reactor was intended to utilize this property, the hydrate formation in porous silica gel has enhanced the feasibility of $CO_2$ separation process. Hydrate formation as not for slurry but solid particle makes it possible to used fixed bed reactor, and can be a merit of well-understood technologies in the industrial field.

CO2 Mineral Carbonation Reactor Analysis using Computational Fluid Dynamics: Internal Reactor Design Study for the Efficient Mixing of Solid Reactants in the Solution (전산유체역학을 이용한 이산화탄소 광물 탄산화 반응기 분석: 용액 내 고체 반응물 교반 향상을 위한 내부 구조 설계)

  • Park, Seongeon;Na, Jonggeol;Kim, Minjun;An, Jinjoo;Lee, Chaehee;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.612-620
    • /
    • 2016
  • Aqueous mineral carbonation process, in which $CO_2$ is captured through the reaction with aqueous calcium oxide (CaO) solution, is one of CCU technology enabling the stable sequestration of $CO_2$ as well as economic value creation from its products. In order to enhance the carbon capture efficiency, it is required to maximize the dissolution rate of solid reactants, CaO. For this purpose, the proper design of a reactor, which can achieve the uniform distribution of solid reactants throughout the whole reactor, is essential. In this paper, the effect of internal reactor designs on the solid dispersion quality is studied by using CFD (computational fluid dynamics) techniques for the pilot-scale reactor which can handle 40 ton of $CO_2$ per day. Various combination cases consisting of different internal design variables, such as types, numbers, diameters, clearances and speed of impellers and length and width of baffles are analyzed for the stirred tank reactor with a fixed tank geometry. By conducting sensitivity analysis, we could distinguish critical variables and their impacts on solid distribution. At the same time, the reactor design which can produce solid distribution profile with a standard deviation value of 0.001 is proposed.