DOI QR코드

DOI QR Code

Usable Capacity for CO2 capture and storage in MOFs

금속 유기 골격체를 활용한 사용 가능한(Usable capacity) 이산화탄소 포집 연구

  • Park, Seoha (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology(GNTECH)) ;
  • Oh, Hyunchul (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology(GNTECH)) ;
  • Jang, Haenam (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology(GNTECH))
  • 박서하 (국립 경남과학기술대학교 미래융복합기술연구소 에너지공학과) ;
  • 오현철 (국립 경남과학기술대학교 미래융복합기술연구소 에너지공학과) ;
  • 장해남 (국립 경남과학기술대학교 미래융복합기술연구소 에너지공학과)
  • Received : 2018.10.10
  • Accepted : 2018.11.23
  • Published : 2018.12.31

Abstract

Usable capacity is one of the most important parameters for evaluating the performance of an adsorbent for $CO_2$ capture from flue gas streams. In the pressure swing adsorption (PSA) process, the usable capacity is calculated as the difference between the quantity adsorbed in flue gas at high pressure (ca. 20 bar) and the quantity adsorbed at lower purge pressure (ca. 2 bar). In this paper, two stereo-types of metal-organic framework (MOF) were evaluated as an promising adsorbent for $CO_2$ capture: flexible structured MOF (MIL-53) and MOF possessing strong binding sites (MOF-74). The results showed that a total $CO_2$ capture capacity is strongly related to the specific surface area and heat of adsorption, revealing high uptake in MOF-74. However, the usable capacity was more pronounced in MIL-53 due to a structural transition.

'사용 가능한 흡착량(usable capacity)'은 (굴뚝의)배가스로부터 나오는 $CO_2$를 포집하기 위해 사용되는 흡착제의 성능 평가에 가장 중요하게 여겨지는 매개 변수 중 하나이다. 특히, PSA(압력차 흡착법) 공정에서 '사용 가능한 흡착량'은 고압 (약 20 bar) 배가스에 흡착 양과 낮은 퍼지(purge) 압력 (약 2 bar) 흡착양 사이의 차이로 계산된다. 최근 PSA 공정에 활용 가능한 흡착제로 비표면적이 매우 높은 금속-유기 골격체(MOF)에 대한 연구가 활발히 이루어지고 있다. 따라서 본 논문에서는 대표적인 두 가지 성질(유연 구조화 MOF (MIL-53) 및 강한 결합 부위를 갖는 MOF (MOF-74))을 포함하고 있는 금속-유기 골격체(MOF)를 활용하여 $CO_2$ 포집 성능을 평가 하였다. 20 bar에서의 최대 흡착량은 MOF-74이 MIL-53보다 약 65%이상 높았으나, '사용 가능한 흡착량(usable capacity)'을 계산해 보면, MIL-53이 약 50% 이상 높음을 보여주었다.

Keywords

OGJGBN_2018_v27n4_80_f0001.png 이미지

Fig. 1. The structure of (a)MOF-74-Ni and (b)closed-pore and open pore of MIL-53

OGJGBN_2018_v27n4_80_f0002.png 이미지

Fig. 2. XRD patterns of (a) MOF-74-Ni and (b) MIL-53

OGJGBN_2018_v27n4_80_f0003.png 이미지

Fig. 3. N2 adsorption isotherms of (a) MOF-74-Ni and (b) MIL-53

OGJGBN_2018_v27n4_80_f0004.png 이미지

Fig. 4. CO2 heat of adsorption for (a) MOF-74-Ni and (b) MIL-53

OGJGBN_2018_v27n4_80_f0005.png 이미지

Fig. 5. CO2 usable capacity of (a) MOF-74-Ni and (b) MIL-53.

Table 1. Total CO2 uptake and Usable capacity quantity on MOF-74-Ni and MIL-53 at 298K, 20bar

OGJGBN_2018_v27n4_80_t0001.png 이미지

References

  1. Jason Heinrich, 2002, Legal Implications of $CO_2$ Ocean Storage, Working paper in Laboratory for energy and the environment, MIT, July
  2. Sangdo Park, 2003, Carbon dioxide reduction and processing technology, News & Information for Chemical Engineers, Vol. 21, pp. 739-745
  3. Kitae Park, 2012, New scientist column: low energy carbon capture technology development, News & Information for Chemical Engineers Vol. 30, pp. 332-338
  4. Jihyeon Lee, et al., 2012, Performance and economic evaluation for installing $CO_2$ capture process after burning to a domestic supercritical coalfired thermal power plant, Korean Chemical Engineering Research Vol. 50, pp. 365-370 https://doi.org/10.9713/kcer.2012.50.2.365
  5. Jacob Goldsmith, et al., 2013, Theoretical limits of hydrogen storage in metal-organic frameworks: Opportunities and trade-offs", Chemistry of Materials Vol. 25, pp. 3373-3382 https://doi.org/10.1021/cm401978e
  6. Jun Kim, et al., 2013, "$CO_2$ Adsorption in Metalorganic Frameworks", Korean Chemical Engineering Research, Vol. 51, pp. 171-180 https://doi.org/10.9713/kcer.2013.51.2.171
  7. Wei Li, et al., 2014, Research Update: "Mechanical properties of metal-organic frameworks-Influence of structure and chemical bonding, APL Materials, Vol. 2, pp. 123902 https://doi.org/10.1063/1.4904966