DOI QR코드

DOI QR Code

Effect of Carbonic Anhydrase on CO2 Absorption in Amine Solutions for CO2 Capture

CO2 포집용 아민 흡수제에서 탄산무수화 효소가 CO2 흡수에 미치는 영향

  • 이인영 (한국전력공사 전력연구원) ;
  • 곽노상 (한국전력공사 전력연구원)
  • Received : 2017.08.25
  • Accepted : 2017.11.10
  • Published : 2017.11.30

Abstract

The effect of carbonic anhydrase on $CO_2$ absorption rates and the heat of reaction were evaluated in various amine solutions for post combustion $CO_2$ capture process. The $CO_2$ absorption rate was analyzed in 30 wt% MEA, AMP, DMEA, MDEA aqueous solutions with and without carbonic anhydrase (250 mg/L) from bovine erythrocyte. $CO_2$ absorption rates were increased in all solutions with carbonic anhydrase. The effect of carbonic anhydrase on absorption rates was more in tertiary amine (DMEA and MDEA) solutions than in primary amine (MEA) and hindered amine (AMP) solutions. The heat of reaction of MEA, DMEA, MDEA aqueous solutions with and without carbonic anhydrase were measured using reaction calorimeter. Carbonic anhydrase decreased the heat of absorption in all solutions. The results suggested that tertiary amines that have the excellent desorption ability were suitable for applying carbonic anhydrase to the post combustion $CO_2$ capture process and the effect of carbonic anhydrase was best in MDEA solution.

연소후 아민 $CO_2$ 포집공정에서 탄산수화 효소의 첨가에 따른 다양한 아민 흡수제의 $CO_2$ 흡수에 미치는 영향과 반응열을 평가하였다. 30 wt%의 MEA, AMP, DMEA, MDEA 수용액에 소의 적혈구에서 추출한 탄산무수화 효소 250 mg/L 첨가한 후 흡수속도를 분석한 결과, 모든 흡수제에서 $CO_2$ 흡수속도가 증가하였다. 특히, 1차아민인 MEA와 입체장애아민인 AMP보다는 3차아민인 DMEA와 MDEA에서 속도증진 효과가 컸다. 반응열량계를 이용하여 탄산무수화 효소 첨가후 흡수제(MEA, DMEA, MDEA)와 $CO_2$ 사이의 화학 반응 시 발생하는 반응열을 측정한 결과 효소 촉매의 첨가로 모든 흡수제의 반응열량이 낮아짐을 확인할 수 있었다. 특히, 연소후 아민 흡수제를 이용하는 이산화탄소 포집공정에 탈기 성능이 우수한 3차 아민 계열의 흡수제가 탄산무수화 효소 촉매 적용에 유리한 흡수제이며 이중 MDEA에서 효과가 가장 큼을 알 수 있었다.

Keywords

References

  1. IEA, Energy Technology Perspectives 2017, International Energy Agency, pp. 361-389(2017).
  2. IEA, Energy Technology Perspectives 2012, International Energy Agency, pp. 8-13(2012).
  3. Davidson, R. M., "Post combustion carbon capture from coal fired plants - solvent scrubbing," IEA GHG Report CCC/12, London, UK(2007).
  4. Russo, M. E., Olivieri, G., Marzocchella, A., Salatino, P., Caramuscio, P. and Cavaleiro, C., "Post-combustion carbon capture mediated by carbonic anhydrase," Sep. and Purific. Technol., 107, 331-339(2013). https://doi.org/10.1016/j.seppur.2012.06.022
  5. Savile, C. K. and Lalonde, J., "Biotechnology for the acceleration of carbon dioxide capture and sequestration," Curr. Opinion in Biotechnol., 22, 818-823(2011). https://doi.org/10.1016/j.copbio.2011.06.006
  6. Kunze, A. K., Dojchinov, G., Haritos, V. S. and Lutze, P., "Reactive absorption of $CO_2$ into enzyme accelerated solvents: from laboratory to pilot scale," Appl. Energy, 156, 676-685(2015). https://doi.org/10.1016/j.apenergy.2015.07.033
  7. Nathalie, J. M. C., Elk, P, Fradetteb, S. and Versteeg, G. F., "Effect of pka on the kinetics of carbon dioxide absorption in aqueous alkanolamine solutions containing carbonic anhydrase at 298 K," Chem. Eng. J., 259, 682-691(2015). https://doi.org/10.1016/j.cej.2014.08.001
  8. Pierre, A. C., "Enzymatic Carbon Dioxide Capture," ISRN Chem. Eng., 2012, 1-22(2012).
  9. Nathalie, J. M. C. Elk, P., Peter, W. J., Derksa, P. W. J., Fradetteb, S. and Versteeg, G. F., "Kinetics of absorption of carbon dioxide in aqueous MDEA solutions with carbonic anhydrase at 298 K," Int. J. Greenhouse Gas Control, 9, 385-392(2012). https://doi.org/10.1016/j.ijggc.2012.04.008
  10. Lindskog, S. and Silverman, D. N., "The Catalytic Mechanism of Mammalian Carbonic Anhydrases," In: Chegwidden, W., Carter, N., and Edwards, Y. (Eds), The Carbonic Anhydrase-New Horizons, Birkhauser Verlag, Basil, Switserland, pp. 175-196(2000).
  11. Kawk, N. S., Lee, J. H., Eom, Y. S., J. H., Kim, Lee, I. Y., Jang, K. R. and Shim, J. G., "Analysis of the Heat of Absorption Based on the Chemical Structures of Carbon Dioxide Absorbents," Korean Chem. Eng. Res., 50(1), 123-140(2012).
  12. Han, K. H., Lee, J. S. and Min, B. M., "Absorption Equilibrium of $CO_2$ in the Sterical Hindered Amine, AMP Aqueous Solution," Korea Chem. Eng. Res, 45(2), 197-202(2007)
  13. Lee, J. H., Kim, J. H., Lee, I. Y., Jang, K. R. and Shim, J. G., "Bench Scale Carbon Dioxide Recovery from the Flue Gas by Monoethanolamine," J. Chem. Eng. Jpn., 43, 720-726(2010). https://doi.org/10.1252/jcej.10we033
  14. Kim, Y. E., Lim, J. A., Jeong, S. K., Yoon, Y. I., Bae, S. T. and Nam, S. C., "Comparison of Carbon Dioxide Absorption in Aqueous MEA, DEA, TEA, and AMP Solutuions," Bullet. Korean Chem. Soc., 34(3), 783-787(2013). https://doi.org/10.5012/bkcs.2013.34.3.783
  15. Kim, I. and H. F., Svendsen, "Comparative study of the heats of absorption of post-combustion $CO_2$ absorbents," Int. J. Greeenhouse Gas Control, 5, 309-395(2011).