Browse > Article

Characterization of Glycine Metal Salts for $CO_2$ Absorption  

Lim, Yun-Hui (Department of Applied Environmental Science, Center for Environmental Studies, Kyung Hee University)
Park, Young Koo (Department of Environmental Engineering, Kangwon National University)
Jo, Young-Min (Department of Applied Environmental Science, Center for Environmental Studies, Kyung Hee University)
Publication Information
Applied Chemistry for Engineering / v.23, no.3, 2012 , pp. 284-288 More about this Journal
Abstract
This work deals with the chemical characterization of glycine aqueous solution in $CO_2$ absorption. Three alkali elements were impregnated into the glycine in order to facilitate the formation of amino functionalities. The analysis by IR revealed the transformation of ammonium ions to the amino group. In addition, the NMR analysis showed that the substitution of metal cations to the chemical shift of hydrogen and carbon atoms in glycine; in order of lithium glycinate, sodium glycinate and potassium glycinate depending on the electro negativity. Meanwhile, the $CO_2$ absorption at room temperature was the highest in primary amine solution, but at the increasing temperature sodium glycinate could capture more $CO_2$ than that of the pure amine solution.
Keywords
$CO_2$; glycine; alkali metal; IR; NMR;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 R. J. Hook, Ind. Eng. Chem. Res., 36, 1779 (1997).   DOI   ScienceOn
2 M. Wolpert and P. Hellwig, Spectrochimica Acta Part A, 64, 987 (2006).   DOI   ScienceOn
3 S. W. Ahn, Y. K. Kim, H. C. Song, and J. W. Park, Energy Eng. J., 6, 203 (1997).
4 Y. H. Lim, K. M. Lee, H. S. Lee, and Y. M. J, J. KOSAE, 26, 286 (2010).
5 S. Ma'mun, H. F. Svendsen, K. A. Hoff, and O. Juliussen, Energ. Manag., 48, 251 (2007).
6 S. Y. Ahn, H. J. Song, J. W. Park, J. H. Lee, I. Y. Lee, and K. R. Jang, Korean J. Chem. Eng., 27, 1576 (2010).   DOI   ScienceOn
7 H. J. Song, S. M. Lee, H. C. Song, S. W. Ahn, and J. W. Park, J. Energy Eng., 14, 219 (2005).
8 B. A. Oyenekan and G. T. Rochelle, Ind. Eng. Chem. Res., 45, 2457 (2006).   DOI   ScienceOn
9 T. Pintola, P. Tontiwachwuthikul, and A. Meisen, Gas Sep. Purification, 7, 47 (1993).   DOI   ScienceOn
10 Y. M. Cho, S. C. Nam, Y. I. Yoon, S. J. Moon, and I. H. Baek, Appl. Chem. Eng., 21, 195 (2010).
11 B. R. Strazisar, R. R. Anderson, and C. M. White, Energy Fuels, 17, 1034 (2003).   DOI   ScienceOn
12 U. E. Aronu, H. F. Svendsen, and K. A. Hoff, Int. J. Greenhouse Gas Control, 4, 771 (2010).   DOI   ScienceOn
13 P. S. Kumar, J. A. Hogendoorn, G. F. Versteeg, and P. H. M. Feron, AlChE J., 49, 203 (2003).   DOI   ScienceOn
14 H. J. Song, S. M. Lee, J. H. Lee, J. W. Park, K. R. Jang, J. G. Shim, and J. H. Kim, J. Kor. Soc. Environ. Eng., 31, 505 (2009).
15 T. McKee and J. R. McKee, Biochemistry, 3/E, 80pp, Life Science Publishing Co. (2004).
16 J. V. Holst, G. F. Versteeg, D. W. F. Brilman, and J. A. Hogendoorn, Chem. Eng. Sci., 64, 59 (2009).   DOI   ScienceOn
17 S. Lee, J. W. Park, H. J. Song, S. Maken, and T. Filburn, Energy Policy, 36, 326 (2008).   DOI   ScienceOn
18 Y. H. Lim, Y. M. Jo, and J. S. Park, Appl. Chem. Eng., 22, 526 (2011).
19 S. K. Oh, Y. W. Rhee, S. C. Nam, Y. I. Yoon, and Y. E. Kim, J. Energy Eng., 17, 251 (2008).
20 L. G. Wade, Jr., Organic Chemistry, 1299pp, Prentice Hall (2001).
21 J. V. Holst, S. R. A. Kersten, and K. J. A. Hogendoorn, J. Chem. Eng. Data, 53, 1286 (2008).   DOI   ScienceOn
22 C. Mathonat, V. Majer, A. E. Mather, and J. P. E. Grolier, Fluid Phase Equilibria, 140, 170 (1997).