• Title/Summary/Keyword: 이산화탄소 전환

검색결과 232건 처리시간 0.03초

하이드로퀴논 크러스레이트를 이용한 매립가스 내 이산화탄소 분리에 관한 연구 (Study on Selective Separation of Carbon Dioxide from Land-fill Gas using Hydroquinone Clathrate)

  • 한규원;문동현;신형준;이재정;윤지호;이강우
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.151.2-151.2
    • /
    • 2010
  • 본 연구는 하이드로퀴논(HQ)을 이용하여 매립가스로부터 이산화탄소를 선택적으로 분리하고 유기 크러스레이트 형태로 분리 및 저장에 적용하기 위한 연구로써 하이드로퀴논을 다양한 객체가스와 반응시키면서 열역학적 안정영역을 파악하고 분광학적 방법을 이용하여 미세구조 변화를 분석하고자 하였다. 먼저 ${\alpha}$-HQ를 고압(4MPa)의 이산화탄소와 반응시켜 이산화탄소가 포집된 ${\beta}$-HQ를 합성하였고, 동공 내에 존재하는 이산화탄소를 제거하여 동공을 유지하는 empty ${\beta}$-HQ를 만들었다. 온도를 증가시키면서 XRD 패턴을 측정한 결과 298 K 에서 378 K 사이에서 ${\beta}$-HQ 시료는 서서히 empty ${\beta}$-HQ 의 구조로 전환되었으며 378 K 이상의 온도에서 ${\alpha}$-HQ 구조로 급격히 전환되었다. 또한 생성된 empty ${\beta}$-HQ 동공에 이산화탄소가 포집, 해리되는데 있어서 온도의 영향을 확인하기 위해 298K과 343K의 온도에서 실시간 라만분광법으로 측정하였다. 그 결과 298K에서 약 200분의 시간이 지난 후 이산화탄소는 하이드로퀴논 동공 내로 포집되어 안정화되었으며 압력해방 후에는 빠져나가지 않고 동공 내에 존재함을 확인하였다. 그러나 343K에서는 급격히 포집되어 30분 이내 안정화되었고, 압력해방 후 동공 내에 존재하지 못하고 빠져나가는 것을 확인하였다. Empty ${\beta}$-HQ의 이산화탄소 선택도를 관찰하기 위해 이산화탄소와 메탄, 수소, 질소의 조성이 각각 30%, 30%, 20%, 20%인 혼합가스와 반응시킨 후 가스 크로마토그래프 분석을 실시한 결과, empty ${\beta}$-HQ내 포집된 가스 중 이산화탄소의 조성이 약 80% 이상으로 나타나 높은 선택도를 나타냄을 관찰하였다.

  • PDF

대기압 플라즈마 반응기에서의 CH4와 CO2의 전환처리 특성 (Conversion Characteristics of CH4 and CO2 in an Atmospheric Pressure Plasma Reactor)

  • 김태경;이원규
    • 공업화학
    • /
    • 제22권6호
    • /
    • pp.653-657
    • /
    • 2011
  • 대기압 플라즈마 반응기를 이용한 메탄과 이산화탄소의 전환처리로 수소와 일산화탄소로 구성된 합성가스를 제조하는 공정특성을 연구하였다. 유전체 격벽 방전방식의 플라즈마 반응기를 인가전력, 혼합가스의 구성비 및 사용된 반응기의 갯수 등의 공정변수들에 대하여 메탄과 이산화탄소의 전환율에 미치는 영향이 분석되었다. 인가전력의 공급에 따라 플라즈마 반응기 자체의 온도 상승이 일어나지만 반응기 온도 증가가 반응기체의 전환율 향상에 효과가 크지 않았다. 그러나 인가전력이 증가할수록 메탄과 이산화탄소의 전환율이 크게 증가하였다. 반응기체인 $CH_4/CO_2$ 비가 커질수록 $CH_4$의 전환율은 감소하나 $CO_2$의 경우는 증가하였다. 전체적으로 반응에 따른 $CH_4$의 전환율이 $CO_2$의 전환율보다 큰 경향성을 보인다.

이산화탄소의 화학적 전환에 의한 폴리카보네이트 및 폴리우레탄의 원료 합성 (Synthesis of the Raw Materials of Polycarbonate and Polyurethane by CO2 Chemical Utilization)

  • 백준현
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권2호
    • /
    • pp.187-192
    • /
    • 2016
  • 이산화탄소의 화학적 전환기술은 온실가스 저감뿐만 아니라 탄소자원화를 통해 유한한 자원을 대체할 수 있는 기술이다. 다양한 화학반응에 의한 이산화탄소의 전환이 상용화되어 있지만, 대량의 이산화탄소를 자원화하기 위해서는 혁신적인 기술개발이 필요하며 전세계적으로 이에 대한 연구가 활발히 진행되고 있다. 이산화탄소를 직접 분자구조내에 삽입하는 기술 중 고분자 원료물질로 이용되고 있는 Dimethyl carbonate와 Polyol에 대한 제조기술 현황에 대해 소개하였다. RIST에서는 Dimethyl carbonate 제조기술로 urea methanolysis에 의한 촉매 및 공정을 개발하였으며, Polyol의 경우 고유 촉매개발 및 polyol 제품군에 대한 연구를 수행중에 있다. 이들은 분자내에 이산화탄소를 40%이상 포함할 수 있는 화학제품이므로 실용화 성공 시 온실가스 저감에 큰 기여를 할 수 있을 것으로 기대된다.

이산화탄소의 전기화학적 변환 (Electrochemical Conversion of Carbon Dioxide)

  • 송지은;신운섭
    • 전기화학회지
    • /
    • 제12권2호
    • /
    • pp.131-141
    • /
    • 2009
  • 이산화탄소의 유용한 화합물로의 전환은 온실가스 증가로 인한 기후변화에 따른 환경문제의 해결 뿐 아니라 탄소원의 재활용이란 관점에서 무척 중요하다. 그러나 탄소화합물 중 가장 안정된 이산화탄소를 다른 유용한 화합물로 변환시키기 위해서는 에너지가 투입되어야 하고 효과적인 전환을 위하여 촉매의 개발 및 관련된 반응 조건의 확립이 필요하다. 본 총설에서는 그 동안 전기화학적으로 이산화탄소를 변환시킨 연구 내용들을 전극재료, 무기화합물, 효소를 이산화탄소의 환원 촉매로서 이용한 경우로 나누어 전체적으로 살펴보았다. 선택성이 좋고 효율적이며 안정성을 가진 촉매는 아직 개발되지 않은 상황이므로 앞으로 많은 연구가 진행되어야 할 분야이다.

이산화탄소 개질반응을 위한 니켈 촉매의 활성 및 성능향상 (Catalytic activities and performance enhancement of Ni catalysts for CO2 reforming)

  • 전소연;김동선;김권일
    • 청정기술
    • /
    • 제9권3호
    • /
    • pp.125-132
    • /
    • 2003
  • 본 연구에서는 이산화탄소 개질반응에 대한 연구의 일환으로 HY-zeolite를 주요 담체로 하여 니켈촉매의 활성화 개선에 대한 연구를 수행하였다. 메탄과 이산화탄소의 전환율은 반응온도가 증가함에 따라 증가하였고, $700^{\circ}C$ 이상이 되었을 때 80% 이상의 전환율을 얻었고, 니켈의 담지량이 증가함에 따라 촉매의 활성이 증가하였으며, 13wt%에서 가정 높은 활성을 보였다. 담체에 대한 영향으로 HY-zeolite 외에 ${\gamma}-Al_2O_3$$SiO_2$에 니켈을 담지시켜 반응활성을 비교한 결과 메탄과 이산화탄소의 초기 전환율은 HY-zeolite에 담지된 니켈 촉매를 사용했을 때가 가장 높았으나, 시간이 지남에 따라 ${\gamma}-Al_2O_3$에 담지된 니켈 촉매보다 비활성화가 빨랐지만 24시간 반응 후에도 메탄의 전환율이 80% 이상을 나타내었다. 그리고 13wt%Ni/HY-zeolite 촉매의 성능 향상을 위하여 Mg, Mn, K, Ca을 조촉매로 첨가하여 반응활성을 조사한 결과 Mg을 첨가한 촉매가 높은 활성과 안정성을 나타내었고, Mg의 최적 첨가량이 5wt%임을 확인하였다.

  • PDF

상압 플라즈마-촉매 하이브리드 반응기를 통한 CO2와 CH4의 전환처리 (Conversion of CO2 and CH4 through Hybrid Reactor Composed of Plasma and Catalyst at Atmospheric Pressure)

  • 김태경;누엔덕바;이원규
    • 공업화학
    • /
    • 제25권5호
    • /
    • pp.497-502
    • /
    • 2014
  • 상압 플라즈마 반응기 내에 Ni-$Al_2O_3$와 Ni-$MgAl_2O_4$ 촉매를 충진한 하이브리드 반응기를 이용하여 메탄과 이산화탄소의 전환반응을 진행하였다. 인가전력, 반응가스 유량, 혼합비율 및 반응기 온도 등 다양한 공정변수와 촉매의 충진 유무에 따른 메탄과 이산화탄소의 전환반응 특성이 분석되었다. 촉매의 반응 기여도 분석에서 공정온도를 $400^{\circ}C$까지 올린 경우에도 플라즈마 방전이 없이는 메탄과 이산화탄소의 촉매를 통한 자발적 전환반응이 일어나지 않았다. 이는 촉매를 충진하지 않은 플라즈마 방전만의 전환공정과의 비교를 통하여 확인할 수 있었다. 플라즈마 반응기에 촉매를 적용하는 경우에는 공정의 적절성과 전환처리에 적합한 촉매의 선택이 필수적이다.

마이크로웨이브 플라즈마를 이용한 이산화탄소 분해

  • 곽형신;강민호;나영호;엄환섭
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.261.1-261.1
    • /
    • 2014
  • 지구상에 존재하는 모든 생물에 의해 배출되는 이산화탄소는 온실가스로써 산업혁명 이후 급격한 농도 증가로 인해 지구 온난화 등의 다양한 환경문제를 초래하고 있다. 지구 온난화의 가시화로 인한 각종 기후 협약 및 탄소배출권 등에 규제로 온실가스 감축의무부과가 확실해져 탈 석유기반 사회로 전환을 위한 이산화탄소를 처리하는 다양한 연구가 각국에서 활발히 진행 중이다. 본 연구에서 마이크로웨이브 플라즈마 토치를 이산화탄소 분해에 이용하게 되었고 그 목적은 이산화탄소가스를 마이크로웨이브로 가열하여 순수한 이산화탄소 플라즈마 토치를 발생함으로서 지구 온난화의 주범인 이산화탄소를 생산적으로 이용하기 위한 것으로 전자파를 발진하는 마그네트론으로는 3kW, 2.45GHz의 주파수를 사용한다. 마이크로웨이브 플라즈마 토치를 이용한 이산화탄소의 분해 시 생성되는 물질을 확인하기 위하여 이산화탄소의 열역학적 평형을 계산하였으며 또한 이산화탄소의 분해 반응의 준 평형상태에서의 속도상수를 이용하여 각 분해반응생성물들의 밀도비율을 계산하였고, 이를 일반화시켜 도시하였다. 위 과정을 통해 고온의 이산화탄소 토치는 탄화수소 연료를 1기압에서 개질할 수 있음을 알 수 있다. 예를 들어 메탄개질은 $CO_2+CH_4{\rightarrow}2CO+2H_2$의 반응식이 된다. 이때 엔탈피와 엔트로피 변화는 각 각 ${\Delta}H=247kJ/mole$${\Delta}S=257J/mole/deg.$이며 이 반응에 대한 gibbs 자유에너지는 $G={\Delta}H-T{\Delta}S$로서 개질 자발반응이 일어나는 온도는 $T={\Delta}H/{\Delta}S=961K$가 된다. 그리고 탄화수소 개질에 참여하는 산소와 CO 라디칼의 밀도가 대단히 높다. 따라서 메탄개질은 이산화탄소 토치를 통하여 1기압에서 쉽게 이루어진다.

  • PDF

제올라이트에 담지된 Ni 촉매상에서 메탄에 의한 이산화탄소의 개질반응에서 첨가된 조촉매의 영향 (The influence of promoter for $CO_2$ reforming reaction by methane over Ni supported zeolite catalysts)

  • 정헌도;김권일;김태환;이범석;추고연
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.209-213
    • /
    • 2002
  • 최근 들어 메탄올 환원제로 사용하는 이산화탄소의 촉매 개질 반응이 많은 주목을 받고 있다. 메탄에 의한 이산화탄소의 개질 반응 시 생성되는 합성 가스는 기존의 수증기 개질 반응에서 생성되는 합성 가스에 비하여 $H_2$/CO의 비가 낮으며 직접 메탄올 및 DME와 같은 유용한 물질로의 전환이 유리하므로 이에 대한 연구가 활발히 진행 중에 있다.(중략)

  • PDF

플라즈마 산화분해-탄화물 가스화 전환에 의한 태양연료 생산 (Production of Solar Fuel by Plasma Oxidation Destruction-Carbon Material Gasification Conversion)

  • 송희관;전영남
    • 청정기술
    • /
    • 제26권1호
    • /
    • pp.72-78
    • /
    • 2020
  • 화석연료의 사용과 바이오가스 생산 과정에서 공기오염과 기후변화문제가 발생된다. 기후변화 주요 원인물질인 이산화탄소와 메탄을 양질의 에너지원으로 전환하는데 연구가 지속되고 있다. 본 연구에서는 바이오가스를 양질의 에너지로 전환하고 태양광과 풍력과 같은 연속생산의 문제가 있는 재생에너지와 연계된 태양연료를 생산하기 위해 플라즈마-탄화물 전환장치를 제안하였다. 그리고 이에 대한 가능성을 제시하기 위해 바이오가스 전환에 영향을 미치는 O2/C비, 전체가스공급량, CO2/CH4공급비의 변화에 따른 전환 및 생성가스 특성 파악하였으며 그 결과는 다음과 같다. O2/C비가 높아질수록 메탄과 이산화탄소의 전환이 증가하였다. 전체가스공급량은 임의 특정 값에서 최대의 전환을 보였다. CO2/CH4비 감소할 때 전환율이 증가되었다. 이상의 결과로 볼 때 본 연구에서 새로이 제안된 플라즈마 산화분해-탄화물 가스화 전환에 의한 태양연료 생산의 가능성이 확인되었다. 그리고 O2/C비가 0.8이고 CO2/CH4를 0.67로 하여 전체가스공급량을 40 L min-1 (VHSV = 1.37)로 공급할 경우 이산화탄소와 메탄 전환이 최대가 되어 생성가스 중 양질의 연료인 수소와 일산화탄소로의 전환이 최대를 보였다.

연속식 가스화로를 이용한 목질계 바이오매스 이산화탄소 가스화 연구 (Study on a Carbon Dioxide Gasification for Wood Biomass using a Continuous Gasifier)

  • 박민성;장유운;장유경;전영남
    • 대한환경공학회지
    • /
    • 제36권10호
    • /
    • pp.704-710
    • /
    • 2014
  • 바이오매스는 지구온난화에 중요한 기여자인 이산화탄소와 같은 온실가스를 해결할 수 있는 대체에너지로 간주된다. 또한 바이오매스 에너지는 열화학적 전환 공정을 통해 다양한 형태로 전환된다. 본 연구에서는 목질계 바이오매스의 가스화를 위해 연속식 가스화기를 제작하였다. 목질계 바이오매스는 폐목재를 사용하였다. 이산화탄소 가스화 실험은 가스화 온도, 함수율 그리고 주입 이산화탄소 농도 변화에 따라 진행하였다. 실험결과는 가스화 온도가 증가함에 따라 생성가스 발생량이 증가함을 보였다. 경질타르는 중질타르의 열적 분해에 의해 증가되었고, 주사현미경 분석을 통해 촤 세공형성이 발달되는 것을 확인하였다. 일산화탄소 농도는 부다 반응에 의해 이산화탄소 주입농도 증가함에 따라 증가하였다. 변수별 실험에 의해, 최적 실험 조건에서 수소와 일산화탄소는 32.91%와 48.33%가 생성되었다.