Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.6.653

Conversion Characteristics of CH4 and CO2 in an Atmospheric Pressure Plasma Reactor  

Kim, Tae Kyung (Department of Chemical Engineering, Kangwon National University)
Lee, Won Gyu (Department of Chemical Engineering, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.22, no.6, 2011 , pp. 653-657 More about this Journal
Abstract
Conversion characteristics of $CH_4$ and $CO_2$ was studied using an atmospheric pressure plasma for the preparation of synthesis gas composed of $H_2$ and CO. The effects of delivered power, total gas flow rate, and gas residence time in the reactor on the conversion of $CH_4$ and $CO_2$ were evaluated in a plasma reactor with the type of dielectric barrier discharge. The increase of reactor temperature did not affect on the increase of conversion if the temperature does not reach to the appropriate level. The conversion of $CH_4$ and $CO_2$ largely increased with increasing the delivered power. As the $CH_4/CO_2$ ratio increased, the $CH_4$ conversion decreased, whereas the $CO_2$ conversion increased. Generally, the $CH_4$ convesion was higher than the $CO_2$ conversion through the variation of the process parameters.
Keywords
greenhouse gas; synthesis gas; atmosperic pressure plasma; dielectric barrier discharge; $CH_4$ and $CO_2$ conversion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Hokazono and H. Fujimoto, J. Appl. Phys., 62, 1585 (1987).   DOI
2 Y. P. Zhang, Y. Li, Y. Wang, C. J. Liu, and B. Eliasson, Fuel Process Technol., 83, 101 (2003).   DOI   ScienceOn
3 M. W. Li, G. H. Xu, Y. L. Tian, L. Chen, and H. F. Fu, J. Phys. Chem. A, 108, 1687 (2004).   DOI   ScienceOn
4 S. L. Yao, M. Okumoto, A. Nakayama, and E. Suzuki, Energy Fuels, 15, 1295 (2001).   DOI   ScienceOn
5 U. Roland, F. Holzer, and F.-D. Kopinke, Appl. Catal. B, 58, 217 (2005).   DOI   ScienceOn
6 T. Jiang, Y. Li, C. Liu, G. Xu, B. Eliasson, and B. Xue, Catal. Today, 72, 229 (2002).   DOI   ScienceOn
7 M. Heintze and B. Pietruszka, Catal. Today, 89, 21 (2004).   DOI   ScienceOn
8 B. Eliasson, C. J. Liu, and U. Kogelschatz, Ind. Eng. Chem. Res., 39, 1221 (2000).   DOI   ScienceOn
9 K. Zhang, U. Kogelschatz, and B. Eliasson, Energy Fuels, 15, 395 (2001).   DOI   ScienceOn
10 C. J. Liu, R. Mallinson, and L. Lobbin, Appl. Catal. A, 178, 17 (1999).   DOI   ScienceOn
11 K. Zhang, B. Eliasson, and U. Kogelschatz, Ind. Eng. Chem. Res., 41, 1462 (2002).   DOI   ScienceOn
12 J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, IEEE Trans. Plasma Sci., 26, 1685 (1998).   DOI   ScienceOn
13 W. S. Kang, J. M. Park, Y. Kim, and S. H. Hong, IEEE Trans. Plasma. Sci., 31, 504 (2003.)   DOI   ScienceOn
14 H. W. Lee, S. H. Nam, A-A. H. Mohamed, G. C. Kim, and J. K. Lee, Plasma Process. Polym., 7, 274 (2010).   DOI   ScienceOn
15 H. K. Song, H. Lee, J. W. Choi, and B. K. Na, Plasma Chem. Plasma Process, 24, 57 (2004).   DOI