• Title/Summary/Keyword: 의료 방사성동위원소

Search Result 28, Processing Time 0.024 seconds

Measurement and Estimation for the Clearance of Radioactive Waste Contaminated with Radioisotopes for Medical Application (의료용 방사성폐기물 자체처분을 위한 방사능 측정 및 평가)

  • Kim, Changbum;Park, MinSeok;Kim, Gi-Sub;Jung, Haijo;Jang, Seongjoo
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.8-14
    • /
    • 2014
  • The amounts of radioactive wastes to be disposed in the medical institute have been increased due to development of radiation diagnosis and therapy rapidly. They are produced mostly by the very short lived radioisotopes such as $^{18}F$ used in PET/CT, $^{99m}Tc$, $^{123}I$, $^{125}I$ and $^{201}Tl$, etc. IAEA proposed a criteria for the clearance level of waste which depends on the individual ($10{\mu}Sv/y$) and collective dose (1 man-Sv/y), and concentration of each nuclide (IAEA Safety Series No 111-P-1.1, 1992 and IAEA RS-G-1.7, 2004). Radioactive wastes of $^{18}F$, $^{99m}Tc$, $^{123}I$, $^{125}I$ and $^{201}TI$ in the several types of container like Marinelli beaker, vial and plastic, were collected to measure the concentration of the waste of each nuclide in accordance with IAEA criteria. The measurement method and procedure of determining specific activity of the wastes using gamma emitters like MCA, gamma counter and beta emitters were developed. For the efficiency calibration of the detectors, CRM (certified reference material) which has the same dimension and shape was provided by Korea Research Institute of Standards and Science (KRISS). Correction factor of the radioactivity decay was calculated based on the measurement results, and the consideration of mutual relation with theoretical equation. The result of this study will be proposed as ISO standard.

The Correction Effect of Motion Artifacts in PET/CT Image using System (PET/CT 검사 시 움직임 보정 기법의 유용성 평가)

  • Yeong-Hak Jo;Se-Jong Yoo;Seok-Hwan Bae;Jong-Ryul Seon;Seong-Ho Kim;Won-Jeong Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.45-52
    • /
    • 2024
  • In this study, an AI-based algorithm was developed to prevent image quality deterioration and reading errors due to patient movement in PET/CT examinations that use radioisotopes in medical institutions to test cancer and other diseases. Using the Mothion Free software developed using, we checked the degree of correction of movement due to breathing, evaluated its usefulness, and conducted a study for clinical application. The experimental method was to use an RPM Phantom to inject the radioisotope 18F-FDG into a vacuum vial and a sphere of a NEMA IEC body Phantom of different sizes, and to produce images by directing the movement of the radioisotope into a moving lesion during respiration. The vacuum vial had different degrees of movement at different positions, and the spheres of the NEMA IEC body Phantom of different sizes produced different sizes of lesions. Through the acquired images, the lesion volume, maximum SUV, and average SUV were each measured to quantitatively evaluate the degree of motion correction by Motion Free. The average SUV of vacuum vial A, with a large degree of movement, was reduced by 23.36 %, and the error rate of vacuum vial B, with a small degree of movement, was reduced by 29.3 %. The average SUV error rate at the sphere 37mm and 22mm of the NEMA IEC body Phantom was reduced by 29.3 % and 26.51 %, respectively. The average error rate of the four measurements from which the error rate was calculated decreased by 30.03 %, indicating a more accurate average SUV value. In this study, only two-dimensional movements could be produced, so in order to obtain more accurate data, a Phantom that can embody the actual breathing movement of the human body was used, and if the diversity of the range of movement was configured, a more accurate evaluation of usability could be made.

Radiation Safety Consideration Regarding the Treatment which uses the Radioactive Substance (방사성물질을 이용한 치료의 안전관리 고찰)

  • Lim, Cheong-Hwan;Kim, Seung-Chul;Lee, Gui-Won
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.217-224
    • /
    • 2008
  • Is trend that treatment that use isotope of radioactive substance increases from 1964 to now steadily. Bursting tube state solidified accordingly. But, do not establish treatment ward in presence at a sickbed by means that present regulation and system escape this as well as possession that exert negative impact in treatment action preferably is and is treating by radioactivity of small quantity, treatment air by that do not detain many sickers without equaling the institution although there is treatment ward keeps fair death anniversary and is in reservation stand-by status. To possess about 10 therapy rooms including existing sickroom in the institute of nuclear energy recently is looked but is waiting for an opportunity for treatment during suitableness time yet indeed even as that operate 57 radiation isotope therapy rooms all in about 28 hospitals in present domestic state is solveded. Therefore, radiation safety supervision by medical treatment action that treat as radioactive substance may need more active effort. Make mandatory to equipment that hospital which correspond to present the third medical examination and treatment must equip, or effort about more active system improvement may have to be about equipment that enforce this.

Discussion about the Self Disposal Guideline of Medical Radioactive Waste (의료용 방사성폐기물 자체처분 가이드라인에 관한 고찰)

  • Lee, Kyung-Jae;Sul, Jin-Hyung;Lee, In-Won;Park, Young-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.2
    • /
    • pp.13-27
    • /
    • 2017
  • Purpose In the procedure of domestic medical radioactive self-disposal, there are many requests of supplementation and difficulties on the screening process. In this regard, presentation of basic guideline will improve the work processing efficiency of medical institution radioactive waste. From 2015 to 2016, We reviewed and compared a supplementary requests of domestic fifteen medical institution radioactive self-disposal Plan & Procedure manual. In connection with this, we derive the details of the radioactive waste document based on the relative regulation of nuclear safety Act. The representative supplementary requests of Korea Institute of Nuclear Safety are disposal method of non-flammability radioactive waste, storage method of scheduled self-disposal waste, the legitimacy of self-disposal and pre-treatment of self-disposal, reference radioactivity of disused filter and output of storage period, attachment the evidential matter of measurement efficiency when using a gamma counter. Through establishing a medical radioactive waste guideline, we can clearly suggest a classification standard of radioactive nuclide and the type of occurrence. As a result, we can confirm the reduction of examination processing period while preparing a self-disposal document and there is no spending expenses for business agency. Also, the storage efficiency of facility will better and reduce the economic expenses. On the basis of this guideline, we will expect a contribution to the improvement of work efficiency for officials who has a working-level difficulty of radioactive waste self-disposal.

  • PDF

Shielding Calculations of Accelerator Facility for Medical Isotope Production using MCNPX Code (MCNPX 코드를 이용한 의료용 방사성동위원소 생산을 위한 가속기 시설의 방사선차폐 및 선량 계산)

  • Seo Kyu-Seok;Kim Chan-Hyeong
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.210-214
    • /
    • 2004
  • Since production of radioactive isotope for using PET, a lot of neutrons were produced. The produced neutrons were mainly shielded by concrete facility. Secondary photons are generated and emitted from the concrete shielding wall of the PET cyclotron since the proton-generated neutrons are thermalized and absorbed in the concrete wall and emit secondary radiations, i.e., photons. This study calculated neutron dose and photon dose at outside of the accelerator facility using MCNPX code. As results of the calculation, total dose were calculated less than limited dose by law.

  • PDF

Evaluation of Shielding Rate of Bismuth Depending on the Type of Medical Radioisotope (의료용 방사성동위원소의 종류에 따른 비스무트의 차폐율 평가)

  • Han, Sang-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.87-93
    • /
    • 2018
  • In this study, $^{99m}Tc$, $^{123}I$, $^{201}Tl$, $^{18}F$, and $^{131}I$, which are widely used in nuclear medicine, were transmitted through a bismuth shield. We investigated the shielding rates according to the type of radioisotope and the distance of measurement. For the experiment, 6 sheets of lead equivalent 0.25 mm Pb of bismuth shielding material were stacked one by one up to 1.50 mm as the thickness increased. The distance was 30 cm, 50 cm, and 100 cm, and the transmission dose was measured. As a result, the shielding rates was measured as the thickness increased, and the measured value decreased as the distance increased. The shielding rate of $^{123}I$ and $^{201}Tl$ was higher than $^{99m}Tc$, $^{18}F$ and $^{131}I$ showed lower shielding effect when there is a shielding material than when there is no shielding material due to high energy and ${\beta}$ rays. Based on the results of experiments, it would be helpful to reduce the exposure of nuclear medicine workers and to manage the exposure if bismuth shields are used depending on the type of radioisotope.

A Study on the Effective Controlling System of Radio-activity Ventilation (RI사용 의료기관의 효율적인 배기관리 방안)

  • Lee, Kyung-Jae;Lee, Jin-Hyung;Kim, Kyung-Hoon;Kwack, Dong-Woo;Jo, Hyun-Duck;Ko, Kil-Man;Park, Young-Jae;Lee, In-Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.1
    • /
    • pp.91-98
    • /
    • 2008
  • Purpose: Radio-isotopes (RI) use has been steadily developing due to industrial and technical development in the modern medical society. Particularly, popularization of domestic cyclotrons dramatically enable hospitals to produce and use diagnostic radio-isotopes. Generally, only specific facilities such as hospitals, research institutes, nuclear power plants and universities can use radio-isotopes, they are also responsible for ventilation system. The strength of radioactivity in the air is strongly regulated and controlled by korea atomic energy law in Korea Institue of Nuclear Safety (KINS), so that air radioactivity exposure can lead to environmental pollution surrounding places. In this study, we'd like to find out the investigation and the present condition of the controlled ventilation system in domestic hospitals by an emission standard from KINS, and try to reach an agreement about how to use the ventilation system. Result: Definition of filters, features and structures of pre-filters, hepa-filters, charcol filters, filter exchange procedures and precautions are explained. RI deflation concentration and filter exchange cycle have been presented as a standard prescribed in the rules of KINS. The Radiation Control Management System (RCMS) introduced by Seoul National University Bundang Hospital linking to digital pressure gauge with computer controller in another medical facilities were described in details. Conclusions: The system of medical facilities using RI has been remarkably developing in 21 century. Especially, radiation safety control system has also been grown rapidly into the subdivision, specialization, advanced technology along with international technical improvement. However, As far as current RI ventilation system is concerned, it has nothing better than doing in the past. Preferentially, to reinforce this, more sophisticated system with strict periodic filter exchange and exhaust air control guidance should be introduced by applying brilliant domestic information technology for RCMS and digital gauge method. From personal point of view as a radiation safety manager, I have provide with present problems and improvements. Futhermore, more improved guidance should be conducted.

  • PDF

Estimation of Lens Dose of Radioactive Isotopes Using ED3 (ED3를 이용한 방사성동위원소 의약품의 수정체 피폭선량평가)

  • Song, Ha-Jin;Ju, Yong-Jin;Jang, Han;Dong, Kyung-Rae;Kang, Kyeong-Won;Choi, Eun-Jin;Kwak, Jong-Gil;Ryu, Jae-Kwang;Chung, Woon-Kwan
    • Journal of Radiation Industry
    • /
    • v.11 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • It is suggested that the dose limit recommended in the Enforcement Decree of Korea's Nuclear Safety Act should not exceed 150 mSv per year for radiation workers. Recently, however, ICRP 118 report has suggested that the threshold dose of the lens should be reduced to 0.2~0.5 Gy and the mean dose should not exceed 50 mSv per year for an average of 20 mSv over 5 years. Based on these contents, $^{123}I$, $^{99m}Tc$, and $^{18}F-FDG$, which are radioisotope drugs that are used directly by radiation workers in the nuclear medicine department in Korea are expected to receive a large dose of radiation in the lens in distribution and injection jobs to administer them to patients. The ED3 Active Extremity Dosimeter was used to measure the dose of the lens in the nuclear medicine and radiation workers and how much of the dose was received per 1 mCi.

Detection and Measurement of Nuclear Medicine Workers' Internal Radioactive Contamination (핵의학과 종사자의 방사성동위원소 체내오염 측정)

  • Jeong, Gyu-Hwan;Kim, Yong-Jae;Jang, Jeong-Chan;Lee, Jai-Ki
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.123-131
    • /
    • 2009
  • Purpose: We tested a sample of nuclear medicine workers at Korean healthcare institutions for internal contamination with radioactive isotopes, measuring concentrations and evaluating doses of individual exposure. Materials and Methods: The detection and measurement was performed on urine samples collected from 25 nuclear medicine workers at three large hospitals located in Seoul. Urine samples were collected once a week, 100~200 mL samples were gathered up to 6~10 times weekly. A high-purity germanium detector was used to measure gamma radiations in urine samples for the presence of radioactive isotopes. Based on the detection results, we estimated the amounts of intake and committed effective doses using IMBA software. In cases where committed effective doses could not be adequately evaluated with IMBA software, we estimated individual committed effective doses for radionuclides with a very short half life such as $^{99m}Tc$ and $^{123}I$, using the methods recommended by International Atomic Energy Agency. Results: Radionuclides detected through the analysis of urine samples included $^{99m}Tc$, $^{123}I$, $^{131}I$ and $^{201}Tl$, as well as $^{18}F$, a nuclide used in Positron Emission Tomography examinations. The committed effective doses, calculated based on the radionuclide concentrations in urine samples, ranged from 0 to 5 mSv, but were, in the majority of cases, less than 1 mSv. The committed effective dose exceeded 1 mSv in three of the samples, and all three were workers directly handling radioactive sources. No nurses were found to have a committed effective dose in excess of 1 mSv. Conclusions: To improve the accuracy of results, it may be necessary to conduct a long-term study, performed over a time span wide enough to allow the clear determination of the influence of seasonal factors. A larger sample should also help increase the reliability of results. However, as most Korean nuclear medicine workers are currently not necessary to monitored routinely for internal contamination with radionuclides. Notwithstanding, a continuous effort is recommended to reduce any unnecessary exposure to radioactive substances, even if in inconsequential amounts, by regularly surveying workplace environments and frequently monitoring atmospheric concentrations of radionuclides.

  • PDF

Radioactivation Analysis of Concrete Shielding Wall of Cyclotron Room Using Monte Carlo Simulation (PET 사이클로트론 가동에 따른 콘크리트 차폐벽의 방사화)

  • Jang, Donggun;Lee, Dongyeon;Kim, Junghoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.335-341
    • /
    • 2017
  • Cyclotron is a device that accelerates positrons or neutrons, and is used as a facility for making radioactive drugs having short half-lives. Such radioactive drugs are used for positron emission tomography (PET), which is a medical apparatus. In order to make radioactive drugs from a cyclotron, a nuclear reaction must occur between accelerated positrons and a target. After the reaction, unncessary neutrons are produced. In the present study, radioactivation generated from the collisions between the concrete shielding wall and the positrons and neutrons produced from the cyclotron is investigated. We tracked radioactivated radioactive isotopes by conducting experiments using FLUKA, a type of Monte Carlo simulation. The properties of the concrete shielding wall were comparatively analyzed using materials containing impurities at ppm level and materials that do not contain impurities. The generated radioactivated nuclear species were comparatively analyzed based on the exposure dose affecting human body as a criterion, through RESRAD-Build. The results of experiments showed that the material containing impurities produced a total of 14 radioactive isotopes, and $^{60}Co$(72.50%), $^{134}Cs$(16.75%), $^{54}Mn$(5.60%), $^{152}Eu$(4.08%), $^{154}Eu$(1.07%) accounted for 99.9% of the total dose according to the analysis having the exposure dose affecting human body as criterion. The $^{60}Co$ nuclear species showed the greatest risk of radiation exposure. The material that did not contain impurities produced a total of five nuclear species. Among the five nuclear species, 54Mn accounted for 99.9% of the exposure dose. There is a possibility that Cobalt can be generated by inducive nuclear reaction of positrons through the radioactivation process of $^{56}Fe$ instead of impurities. However, there was no radioactivation because only few positrons reached the concrete wall. The results of comparative analysis on exposure dose with respect to the presence of impurities indicated that the presence of impurities caused approximately 98% higher exposure dose. From this result, the main cause of radioactivation was identified as the small ppm-level amount of impurities.