• 제목/요약/키워드: 의견단어

검색결과 79건 처리시간 0.027초

한국어 특성을 고려한 감성 분류 (Sentiment Classification considering Korean Features)

  • 김정호;김명규;차명훈;인주호;채수환
    • 감성과학
    • /
    • 제13권3호
    • /
    • pp.449-458
    • /
    • 2010
  • 다양한 분야에서 인터넷 상의 방대한 양의 문서 혹은 리뷰로부터 유용한 정보를 얻고자 하는 노력이 높아짐에 따라 문서 혹은 리뷰 상의 생각 및 의견에 대한 자동 분류 연구의 필요성이 대두되었다. 이러한 자동분류를 감성 분류라 하며, 감성 분류 연구는 크게 세 가지 단계를 가지는데, 첫 번째로 주관적인 생각이나 느낌을 표현하는 문장을 추출하기 위한 주관성 분류 연구, 두 번째로 문서 또는 문장을 긍정, 부정으로 나누는 극성 분류 연구, 그리고 세 번째로 문서 또는 문장이 어느 정도의 주관성 및 극성을 갖는지 그 강도를 구하는 강도 분류 연구이다. 최근 의견 분류에 대한 연구들을 살펴보면, 분류를 위해 자질(Feature)로서 단일어(Single word)가 아닌 2개 이상의 N-gram 단어, 어휘 구문 패턴 및 통사 구문 패턴 등을 사용하는 것을 확인할 수 있다. 특히, 패턴은 단일어나 N-gram 단어에 비해 유연하고, 언어학적으로 풍부한 정보를 표현할 수 있기 때문에 이를 이용한 많은 연구가 이루어져 왔다. 그럼에도 불구하고, 이러한 연구들은 주로 영어에 대한 연구들이었으며, 한국어에 패턴을 적용하여 주관성을 갖는 문장을 분류하거나, 극성을 분류하는 연구들은 아직 미비하다. 한편, 한국어는 용언의 활용이 발달되어 있어, 어미의 변화가 다양하며, 그 변화에 따라 의미가 미묘하게 변화한다. 그러나 기존 한국어에 대한 의견 분류 연구들은 단어의 핵심 의미만을 파악하기 위해 어미부분을 제거하고 어간만을 취해서 처리하여 어미에 대한 의미변화를 고려하지 못하였다. 그래서 본 연구는 영어에 적용된 패턴을 이용한 기존 방법들을 정리하고, 그 방법들 중에서 극성을 지닌 문장성분 패턴을 한국어에 적용하였다. 그리고 어미의 변화에 대한 패턴을 추출하여 이 변화가 의견 분류의 성능에 미치는 영향을 분석하였다.

  • PDF

인터넷 게시판에서 정보통신윤리 교육을 위한 유해단어 필터링 시스템의 설계와 구현 (Design and Implementation of Harmful Word Filtering System for Education of Information Communication Ethics on Web Board)

  • 김치민;김응곤
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (상)
    • /
    • pp.273-276
    • /
    • 2002
  • 사이버 공간은 개방성, 익명성, 탈중심성의 특성을 갖는다. 이러한 특성으로 인하여 긍정적인 측면과 부정적 측면이 동시에 나타나고 있다. 청소년들의 사이버 공간에서의 활동은 제공되는 정보를 단순하게 탐색하는 수동적 역할에 그치지 않는다. 청소년들은 자신의 의견을 제시하거나 정보를 제공하는 역할도 동시에 하고 있다. 이 과정에서 스스로 유해한 정보를 생산하거나 게시판에서 타인에게 해를 끼치는 행위가 발생하고 있다. 본 논문은 청소년들의 적극적인 정보제공 활동 시점에 발생하고 있는 정보화 역기능 현상을 해결하는 방안으로 인터넷 게시판에서 유해단어 필터링에 의한 정보윤리 교육 기법을 제안한다. 인터넷 게시판에서 유해단어 필터링 기법은 초 중등학교 홈페이지 게시판에서 나타나는 부적절한 행동과 상대방에 대한 성적 모욕, 욕설의 사용, 상대방 비하 등에 관련된 유해단어를 추출하여 유해단어 사전을 구축하고 필터링하는 방법이다. 필터링 된 결과에 따라 글 쓰는 시점에서 정보윤리 컨텐츠를 제공한다. 이 기법을 학교 홈페이지 게시판에 적용한 결과 그렇지 않은 경우에 비하여 학생들의 글쓰기 자세와 글 내용이 바른 것으로 나타났다.

  • PDF

Naïve Bayes와 SVM을 이용한 트위터 데이터의 긍정/부정 의견 자동분류 결과 분석 (Initial Analysis of Positive/Negative Opinion Classification of Twitter Data Using Naïve Bayes and SVM)

  • 조희련;김성국
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 춘계학술발표대회
    • /
    • pp.406-409
    • /
    • 2012
  • '나꼼수 비키니 시위'에 대 긍정적(지지), 부정적(비판) 의견을 담은 트위터 데이터를, 단어의 출현에 주목하여 Naïve Bayes (NB)와 Support Vector Machine (SVM)을 적용하여 자동분류 한 결과, NB가 75.98%로, 73.65%인 SVM 보다 약간 더 나은 성능을 보였다. 본 실험을 통해, 기계학습을 이용한 대중의견(opinion) 자동분류 시스템을 실용화할 때의 고려사항에 대해 살펴 본다.

Q&A 문서의 검색 결과 요약을 활용한 질의응답 시스템 (Question and Answering System through Search Result Summarization of Q&A Documents)

  • 유동현;이현아
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권4호
    • /
    • pp.149-154
    • /
    • 2014
  • 지식iN과 같은 사용자 참여 질의응답 커뮤니티에서 원하는 질문에 대한 답을 찾기 위해서는 검색 결과로 제공되는 다양한 문서를 일일이 확인하여 판단하는 과정이 필요하다. 만일 사용자가 원하는 답변을 자동으로 정제하여 제시할 수 있다면, 질의응답의 사용성이 크게 향상될 수 있다. 본 논문에서는 질의응답 데이터 분석을 통해 사용자의 질문의 유형을 단어, 목록, 도표, 글의 4가지 유형으로 분류하고, 문서 내 통계적 특성을 활용하여 각 분류별 답변을 자동으로 제시하기 위한 방식을 제안한다. 단어, 목록, 글 유형은 질의어에 대해 검색된 질문을 군집화하고, 군집 내 빈도와 질의어에 대한 근접도, 답변 신뢰도 등으로 계산된 답변 내 어휘의 적합도를 활용하여 요약한 답변을 사용자에게 제시한다. 도표형은 답변들에서 사용자의 의견 정보를 추출하여 의견 통계를 도표로 제시한다.

텍스트 문서 기반의 감성 인식 시스템 (An Emotion Scanning System on Text Documents)

  • 김명규;김정호;차명훈;채수환
    • 감성과학
    • /
    • 제12권4호
    • /
    • pp.433-442
    • /
    • 2009
  • 요즈음 인터넷을 통해 물건을 구매하는 경향이 증가하고 있다. 또한 물건을 구매한 소비자는 리뷰, 댓글, 비평 또는 블로그 등의 형식으로 온라인에 그들의 사용 후기를 작성한다. 또한 작성된 사용 후기부터 많은 구매자들은 물건을 구매하기 전에 자신이 구입하고자 하는 물건에 대한 정보를 얻는다. 따라서 회사나 공공기관은 대중이 다른 사람의 의견에 관심을 기울인다는 점 때문에 대중의 의견을 수집하고 분석할 필요성에 직면하였다. 그러나 온라인상에 댓글이 너무 많고, 중복적이면서 짧은 경향이 있다. 이러한 환경 속에서 텍스트 문서의 감성을 인식하는 시스템의 필요성이 대두되었다. 텍스트로부터 작성자의 의견이나 주관적인 생각을 추출할 수 있게 영어에서는 단어에 속성이 주어진 GI와 LKB가 있으나 한글은 아직 속성이 주어진 사전이 존재하지 않는다. 이 논문에서는 한글 품사 중 4개의 품사(명사, 동사, 형용사, 부사)에 속성을 주었다. 그리고 학습 군을 만들어서 감성 단어의 패턴을 구성하고, 문장에서 단어 사이의 공기관계를 구성하여 학습 시켰다. 이 학습을 바탕으로, SO-PMI을 이용하여 문서를 긍정과 부정 2가지 극성을 분류하고, 4개의 품사(명사, 동사, 형용사, 부사)를 각각 조합하여 최상의 조건을 구하였다. 마지막으로 사용자 인터페이스를 통해 새로운 감성 표현, 구성형식, 단어 연관성을 반자동적으로 삽입하고 교정할 수 있는 시스템을 설계하였다.

  • PDF

트위터에서 형태소 분석과 PageRank 기반 화제단어 추출 방법 제안 (Proposal of keyword extraction method based on morphological analysis and PageRank in Tweeter)

  • 이원형;조성일;김동회
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권1호
    • /
    • pp.157-163
    • /
    • 2018
  • SNS를 이용하는 사람들은 매일 자신의 다양한 생각을 SNS에 게시한다. SNS에 게시된 데이터는 수많은 사람들의 생각과 의견이 담겨있다고 할 수 있다. 특히 트위터에서 서비스되는 인기 화제어는 사용자가 올린 글에서 자주 등장한 단어의 횟수를 집계해 순위를 결정한다. 하지만 이와 같은 방법은 단순히 중복된 단어가 나열된 불필요한 데이터에 민감하다. 제안하는 방법은 단어간의 관계도를 이용한 단어의 화제성을 기반으로 순위를 결정하므로 불필요한 데이터의 영향을 적게 받고 주요단어를 안정적으로 추출할 수 있다. 성능 비교를 위하여 내림차순 화제어 순위와 상위 20개중에서 의미 없는 화제어의 비율 측면에서 형태소 분석과 PageRank 기반의 제안 방식과 단순 등장 횟수 기반의 기존 방식을 비교한다. 제안하는 방안과 기존 방안은 상위 20개중에서 무의미한 화제어를 각각 55%과 70%를 순위권에 포함시켰으며 제안한 방법이 기존 방법과 비교할 때 15% 정도 향상된다.

사용자의 정서 단어 분류에 기반한 정서 분류와 선택 방법 (A Classification and Selection Method of Emotion Based on Classifying Emotion Terms by Users)

  • 이신영;함준석;고일주
    • 감성과학
    • /
    • 제15권1호
    • /
    • pp.97-104
    • /
    • 2012
  • 최근에 사용자에 의한 대량의 텍스트 데이터가 발생하면서 사용자의 정보, 의견 등을 분석하는 오피니언 마이닝이 중요하게 부각되고 있다. 오피니언 마이닝 중 특히 정서 분석은 제품, 사회적 이슈, 정치인에 대한 호감 등에 대한 개인적 의견이나 정서를 분석하여 긍정, 부정이나 행복, 슬픔 등의 정서를 분석하는 연구 분야이다. 정서 분석을 위해서 정서 차원 이론의 정서가와 각성 차원의 2차원 공간을 사용하고, 이 공간에서 정서가 분포하는 영역을 설정하여 매핑하는 방법을 사용한다. 그러나 기존에는 정서의 분포 영역을 임의로 설정하는 문제가 있었다. 본 논문에서는 이 문제를 해결하기 위해, 한국어 정서 단어 목록을 사용해 사용자 설문을 실시하여 2차원 상에 12개 정서의 분포를 구성하였다. 또한 2차원 상의 특정 정서 상태가 여러 개의 정서에 중첩되는 경우, 정서에 소속될 확률을 사용한 룰렛휠 방법을 사용하여 하나의 정서를 선택하는 방법을 제안하였다. 제안한 방법을 사용하여 텍스트에서 정서 단어를 추출하여 텍스트를 정서로 분류할 수 있다.

  • PDF

단어 빈도와 유사도 분석 기반의 회의록 요약 시스템 설계 및 구현 (Design and Implementation of Minutes Summary System Based on Word Frequency and Similarity Analysis)

  • 허강호;양진우;김동현;복경수;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제19권10호
    • /
    • pp.620-629
    • /
    • 2019
  • 의사 결정을 위한 토론이나 토의의 내용을 객관적 요약하고 분류하는 자동화된 회의록 요약 시스템이 요구되고 있다. 본 논문은 기존에 사용되었던 회의록 요약 시스템을 보완할 수 있도록 word2vec 모델을 이용한 회의록 요약 시스템을 설계하고 구현한다. 제안 시스템은 형태소 분석 과정에서 불용어를 제거하고 문서에서 공통적인 의견을 가진 대표 문장을 추출하기 위해 추가로 word2vec 모델로 학습을 수행한다. 제안 시스템은 회의 과정에서 수집되는 문서를 분석하여 자동으로 분류하고 다양한 의견들 중 안건을 대표하는 대표 문장을 추출한다. 회의 진행자는 제안 시스템을 통해 회의에서 다뤄지는 모든 안건을 보다 빠르게 확인하고 관리할 수 있다. 제안 시스템은 대규모 토론이나 토의의 여러 가지 안건을 분석하여 대표 의견이 될 수 있는 문장을 요약하여 빠른 정확한 의사 결정을 지원한다.

보완대체의사소통(AAC) 글자판의 단어예측기능에 대한 뇌병변장애인 대상의 사용성 평가 (A Usability Testing of the Word-Prediction Function of the AAC Keyboard for the People with Cerebral Palsy)

  • 이희연;홍기형
    • 재활복지공학회논문지
    • /
    • 제9권3호
    • /
    • pp.209-214
    • /
    • 2015
  • 본 연구의 목적은 (1) 구어로 의사소통을 하는데 어려움을 가지고 있는 뇌병변장애인을 대상으로 보완대체의사소통 글자판의 단어예측기능이 문장산출 속도에 미치는 영향 및 (2) 단어예측기능의 필요성, 편의성, 만족도 등을 조사하는 것이다. 총 10명의 성인 뇌병변장애인들이 평가에 참여하였고, 한국형 하이테크 AAC 기기인 마이토키스마트의 글자판에 탑재된 단어예측기능이 평가도구로 사용되었다. 참가자들은 제시되는 문장을 단어예측기능과 낱글자 직접입력방식을 각각 사용하여 음성출력한 후에, 단어예측기능의 필요성, 사용 편의성 및 만족도를 5점 척도로 평가하도록 요청되었고, 자유 피드백을 통해 기타 의견들을 조사하였다. 연구결과, 문장예측기능을 사용했을 때의 문장생성속도가 낱글자입력방식을 사용했을 때보다 평균적으로 빠르게 나타났으나 통계적으로 유의한 차이는 나타나지 않았다. 이는 참가자들이 새로운 실험도구를 충분히 연습하고 학습할 적응기간이 부족했기 때문인 것으로 보인다. 참가자들의 문장예측기능에 대한 필요성, 편의성, 만족도 등은 전반적으로 긍정적인 응답을 나타냈다.

  • PDF

의도된 의견 대상의 추출을 위한 경험적 방법 (A Heuristic Method for Extracting True Opinion Targets)

  • 소윤규;김한우;정성훈;김동주
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권9호
    • /
    • pp.39-47
    • /
    • 2012
  • 일반적으로 사람들은 특정 상품에 관한 의견을 표현할 때 그 상품이 갖는 개별속성에 대해 긍부정 성향을 표시한다. 어떤 경우에는 상품이 갖는 동질의 개별 속성에 대해 포괄적으로 긍부정 성향을 표현하거나 상품 자체에 대해 표현하기도 한다. 따라서 의견검색 분야에서 추출 대상이 되는 의견 속성명에는 상품의 개별 속성명, 이 개별 속성들을 포함하는 전체어, 그리고 상품명이 존재한다. 그러나 의견 대상을 상품명이나 전체어로 표현할 때, 경우에 따라 의견문장 표면에 나타나는 속성명과 의견 작성자가 의도한 실제 대상이 일치하지 않을 수도 있다. 본 논문에서는 의견문장으로부터 의견 대상을 추출하는 방법을 제시한다. 무엇보다 우리는 의도한 대상과 일치하지 않는 속성명으로부터 의도한 대상을 추출하기 위한 새로운 방법을 제안한다. 제시하는 방법에서는 단어간 의존관계를 이용하여 의견속성 후보쌍을 추출하고, 추출된 후보쌍들 중 의견 대상과 일반적으로 빈번히 불일치하는 속성명을 선택한다. 선택된 속성명을 작성자가 의도한 개별속성으로 변경한 뒤, 이를 포함한 전체 의견속성 후보쌍들로부터 적합한 의견속성을 추출하기 위해 사람들이 관심 있어할만한 순으로 재배열하게 된다.