• Title/Summary/Keyword: 응용분야

Search Result 7,252, Processing Time 0.033 seconds

Ultimate Reality in Daesoon Thought as Viewed from Perennial Philosophy (영원철학(The Perennial Philosophy)으로 본 대순사상의 궁극적 실재)

  • Heo, Hoon
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.32
    • /
    • pp.137-173
    • /
    • 2019
  • Modern scientists are trying to find the basic unit of order, fractal geometry, in the complex systems of the universe. Fractal is a term often used in mathematics or physics, it is appropriate as a principle to explain why some models of ultimate reality are represented as multifaceted. Fractals are already widely used in the field of computer graphics and as a commercial principle in the world of science. In this paper, using observations from fractal geometry, I present the embodiment of ultimate reality as understood in Daesoon Thought. There are various models of ultimate reality such as Dao (道, the way), Sangje (上帝, supreme god), Sinmyeong (神明, Gods), Mugeuk (無極, limitlessness), Taegeuk (太極, the Great Ultimate), and Cheonji (天地, heaven and earth) all of which exist in Daesoon Thought, and these concepts are mutually interrelated. In other words, by revealing the fact that ultimate reality is embodied within fractal geometry, it can be shown that concordance and transformation of various models of ultimate reality are supported by modern science. But when the major religions of the world were divided along lines of personality (personal gods) and non-personality (impersonal deities), most religions came to assume that ultimate reality was either transcendental or personal, and they could not postulate a relationship between God and humanity as Yin Yang (陰陽) fractals (Holon). In addition, religions, which assume ultimate reality as an intrinsic and impersonal being, are somewhat different in terms of their degree of Holon realization - all parts and whole restitution. Daesoon Thought most directly states that gods (deities) and human beings are in a relationship of Yin Yang fractals. In essence, "deities are Yin, and humanity is Yang" and furthermore, "human beings are divine beings." Additionally, in the Daesoon Thought, these models of ultimate reality are presented through various concepts from various viewpoints, and they are revealed as mutually interrelated concepts. As such, point of view regarding the universe wherein Holarchy becomes a models in a key idea within perennial philosophy. According to a universalized view of religious phenomena, perennial philosophy was adopted by the world's great spiritual teachers, thinkers, philosophers, and scientists. From this viewpoint, when ultimate reality coincides, human beings and God are no longer different. In other words, the veracity of the theory of ultimate reality that has appeared in Daesoon Thought can find support in both modern science and perennial philosophy.

Analyzing the Performance of the South Korean Men's National Football Team Using Social Network Analysis: Focusing on the Manager Bento's Matches (사회연결망분석을 활용한 한국 남자축구대표팀 경기성과 분석: 벤투 감독 경기를 중심으로)

  • Yeonsik Jung;Eunkyung Kang;Sung-Byung Yang
    • Knowledge Management Research
    • /
    • v.24 no.2
    • /
    • pp.241-262
    • /
    • 2023
  • The phenomena and game records that occur in sports matches are being analyzed in the field of sports game analysis, utilizing advanced technologies and various scientific analysis methods. Among these methods, social network analysis is actively employed in analyzing pass networks. As football is a representative sport in which the game unfolds through player interactions, efforts are being made to provide new insights into the game using social network analysis, which were previously unattainable. Consequently, this study aims to analyze the changes in pass networks over time for a specific football team and compare them in different scenarios, including variations in the game's nature (Qatar World Cup games vs. A match games) and alterations in the opposing team (higher FIFA rankers vs. lower FIFA rankers). To elaborate, we selected ten matches from the games of the Korean national football team following Coach Bento's appointment, extracted network indicators for these matches, and applied four indicators (efficiency, cohesion, vulnerability, and activity/leadership) from a football team's performance evaluation model to the extracted data for analysis under different circumstances. The research findings revealed a significant increase in cohesion and a substantial decrease in vulnerability during the analysis of game performance over time. In the comparative analysis based on changes in the game's nature, Qatar World Cup matches exhibited superior performance across all aspects of the evaluation model compared to A matches. Lastly, in the comparative analysis considering the variations in the opposing team, matches against lower FIFA rankers displayed superior performance in all aspects of the evaluation model in comparison to matches against top FIFA rankers. We hope that the outcomes of this study can serve as essential foundational data for the selection of football team coaches and the development of game strategies, thereby contributing to the enhancement of the team's performance.

Improvement of Mid-Wave Infrared Image Visibility Using Edge Information of KOMPSAT-3A Panchromatic Image (KOMPSAT-3A 전정색 영상의 윤곽 정보를 이용한 중적외선 영상 시인성 개선)

  • Jinmin Lee;Taeheon Kim;Hanul Kim;Hongtak Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1283-1297
    • /
    • 2023
  • Mid-wave infrared (MWIR) imagery, due to its ability to capture the temperature of land cover and objects, serves as a crucial data source in various fields including environmental monitoring and defense. The KOMPSAT-3A satellite acquires MWIR imagery with high spatial resolution compared to other satellites. However, the limited spatial resolution of MWIR imagery, in comparison to electro-optical (EO) imagery, constrains the optimal utilization of the KOMPSAT-3A data. This study aims to create a highly visible MWIR fusion image by leveraging the edge information from the KOMPSAT-3A panchromatic (PAN) image. Preprocessing is implemented to mitigate the relative geometric errors between the PAN and MWIR images. Subsequently, we employ a pre-trained pixel difference network (PiDiNet), a deep learning-based edge information extraction technique, to extract the boundaries of objects from the preprocessed PAN images. The MWIR fusion imagery is then generated by emphasizing the brightness value corresponding to the edge information of the PAN image. To evaluate the proposed method, the MWIR fusion images were generated in three different sites. As a result, the boundaries of terrain and objects in the MWIR fusion images were emphasized to provide detailed thermal information of the interest area. Especially, the MWIR fusion image provided the thermal information of objects such as airplanes and ships which are hard to detect in the original MWIR images. This study demonstrated that the proposed method could generate a single image that combines visible details from an EO image and thermal information from an MWIR image, which contributes to increasing the usage of MWIR imagery.

Characterization of epitaxial layers on beta-gallium oxide single crystals grown by EFG method as a function of different crystal faces and off-angle (EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면, off-angle에 따른 epitaxial layer의 특성 분석)

  • Min-Ji Chae;Sun-Yeong Seo;Hui-Yeon Jang;So-Min Shin;Dae-Uk Kim;Yun-Jin Kim;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Hae-Yong Lee;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.4
    • /
    • pp.109-116
    • /
    • 2024
  • β-Ga2O3 is a representative ultra-wide bandgap (UWBG) semiconductor that has attracted much attention for power device applications due to its wide-bandgap of 4.9 eV and high-breakdown voltage of 8 MV/cm. In addition, because solution growth is possible, it has advantages such as fast growth rate and lower production cost compared to SiC and GaN [1-2]. In this study, we have successfully grown Si-doped 10 mm thick Si-doped β-Ga2O3 single crystals by the EFG (Edge-defined Film-fed Growth) method. The growth direction and growth principal plane were set to [010] / (010), respectively, and the growth speed was 7~20 mm/h. The as-grown β-Ga2O3 single crystal was cut into various crystal planes (001, 100, ${\bar{2}}01$) and off-angles (1o, 3o, 4o), and then surface processed. After processed, the homoepitaxial layer was grown on the epi-ready substrate using the HVPE (Halide vapor phase epitaxy) method. The processed samples and the epi-layer grown samples were analyzed by XRD, AFM, OM, and Etching to compare the surface properties according to the crystal plane and off-angle.

Deep Learning-based Fracture Mode Determination in Composite Laminates (복합 적층판의 딥러닝 기반 파괴 모드 결정)

  • Muhammad Muzammil Azad;Atta Ur Rehman Shah;M.N. Prabhakar;Heung Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.225-232
    • /
    • 2024
  • This study focuses on the determination of the fracture mode in composite laminates using deep learning. With the increase in the use of laminated composites in numerous engineering applications, the insurance of their integrity and performance is of paramount importance. However, owing to the complex nature of these materials, the identification of fracture modes is often a tedious and time-consuming task that requires critical domain knowledge. Therefore, to alleviate these issues, this study aims to utilize modern artificial intelligence technology to automate the fractographic analysis of laminated composites. To accomplish this goal, scanning electron microscopy (SEM) images of fractured tensile test specimens are obtained from laminated composites to showcase various fracture modes. These SEM images are then categorized based on numerous fracture modes, including fiber breakage, fiber pull-out, mix-mode fracture, matrix brittle fracture, and matrix ductile fracture. Next, the collective data for all classes are divided into train, test, and validation datasets. Two state-of-the-art, deep learning-based pre-trained models, namely, DenseNet and GoogleNet, are trained to learn the discriminative features for each fracture mode. The DenseNet models shows training and testing accuracies of 94.01% and 75.49%, respectively, whereas those of the GoogleNet model are 84.55% and 54.48%, respectively. The trained deep learning models are then validated on unseen validation datasets. This validation demonstrates that the DenseNet model, owing to its deeper architecture, can extract high-quality features, resulting in 84.44% validation accuracy. This value is 36.84% higher than that of the GoogleNet model. Hence, these results affirm that the DenseNet model is effective in performing fractographic analyses of laminated composites by predicting fracture modes with high precision.

Mature Market Sub-segmentation and Its Evaluation by the Degree of Homogeneity (동질도 평가를 통한 실버세대 세분군 분류 및 평가)

  • Bae, Jae-ho
    • Journal of Distribution Science
    • /
    • v.8 no.3
    • /
    • pp.27-35
    • /
    • 2010
  • As the population, buying power, and intensity of self-expression of the elderly generation increase, its importance as a market segment is also growing. Therefore, the mass marketing strategy for the elderly generation must be changed to a micro-marketing strategy based on the results of sub-segmentation that suitably captures the characteristics of this generation. Furthermore, as a customer access strategy is decided by sub-segmentation, proper segmentation is one of the key success factors for micro-marketing. Segments or sub-segments are different from sectors, because segmentation or sub-segmentation for micro-marketing is based on the homogeneity of customer needs. Theoretically, complete segmentation would reveal a single voice. However, it is impossible to achieve complete segmentation because of economic factors, factors that affect effectiveness, etc. To obtain a single voice from a segment, we sometimes need to divide it into many individual cases. In such a case, there would be a many segments to deal with. On the other hand, to maximize market access performance, fewer segments are preferred. In this paper, we use the term "sub-segmentation" instead of "segmentation," because we divide a specific segment into more detailed segments. To sub-segment the elderly generation, this paper takes their lifestyles and life stages into consideration. In order to reflect these aspects, various surveys and several rounds of expert interviews and focused group interviews (FGIs) were performed. Using the results of these qualitative surveys, we can define six sub-segments of the elderly generation. This paper uses five rules to divide the elderly generation. The five rules are (1) mutually exclusive and collectively exhaustive (MECE) sub-segmentation, (2) important life stages, (3) notable lifestyles, (4) minimum number of and easy classifiable sub-segments, and (5) significant difference in voices among the sub-segments. The most critical point for dividing the elderly market is whether children are married. The other points are source of income, gender, and occupation. In this paper, the elderly market is divided into six sub-segments. As mentioned, the number of sub-segments is a very key point for a successful marketing approach. Too many sub-segments would lead to narrow substantiality or lack of actionability. On the other hand, too few sub-segments would have no effects. Therefore, the creation of the optimum number of sub-segments is a critical problem faced by marketers. This paper presents a method of evaluating the fitness of sub-segments that was deduced from the preceding surveys. The presented method uses the degree of homogeneity (DoH) to measure the adequacy of sub-segments. This measure uses quantitative survey questions to calculate adequacy. The ratio of significantly homogeneous questions to the total numbers of survey questions indicates the DoH. A significantly homogeneous question is defined as a question in which one case is selected significantly more often than others. To show whether a case is selected significantly more often than others, we use a hypothesis test. In this case, the null hypothesis (H0) would be that there is no significant difference between the selection of one case and that of the others. Thus, the total number of significantly homogeneous questions is the total number of cases in which the null hypothesis is rejected. To calculate the DoH, we conducted a quantitative survey (total sample size was 400, 60 questions, 4~5 cases for each question). The sample size of the first sub-segment-has no unmarried offspring and earns a living independently-is 113. The sample size of the second sub-segment-has no unmarried offspring and is economically supported by its offspring-is 57. The sample size of the third sub-segment-has unmarried offspring and is employed and male-is 70. The sample size of the fourth sub-segment-has unmarried offspring and is not employed and male-is 45. The sample size of the fifth sub-segment-has unmarried offspring and is female and employed (either the female herself or her husband)-is 63. The sample size of the last sub-segment-has unmarried offspring and is female and not employed (not even the husband)-is 52. Statistically, the sample size of each sub-segment is sufficiently large. Therefore, we use the z-test for testing hypotheses. When the significance level is 0.05, the DoHs of the six sub-segments are 1.00, 0.95, 0.95, 0.87, 0.93, and 1.00, respectively. When the significance level is 0.01, the DoHs of the six sub-segments are 0.95, 0.87, 0.85, 0.80, 0.88, and 0.87, respectively. These results show that the first sub-segment is the most homogeneous category, while the fourth has more variety in terms of its needs. If the sample size is sufficiently large, more segmentation would be better in a given sub-segment. However, as the fourth sub-segment is smaller than the others, more detailed segmentation is not proceeded. A very critical point for a successful micro-marketing strategy is measuring the fit of a sub-segment. However, until now, there have been no robust rules for measuring fit. This paper presents a method of evaluating the fit of sub-segments. This method will be very helpful for deciding the adequacy of sub-segmentation. However, it has some limitations that prevent it from being robust. These limitations include the following: (1) the method is restricted to only quantitative questions; (2) the type of questions that must be involved in calculation pose difficulties; (3) DoH values depend on content formation. Despite these limitations, this paper has presented a useful method for conducting adequate sub-segmentation. We believe that the present method can be applied widely in many areas. Furthermore, the results of the sub-segmentation of the elderly generation can serve as a reference for mature marketing.

  • PDF

A Sasang Theoretical1) Study about the Morph & Image of Sasang Constitutional Medicine (사상의학(四象醫學) 형상관(形象觀)에 대한 사심신물적(事心身物的) 고찰(考察))

  • Kim, Jeong-ho;Song, Jeong-mo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.11 no.1
    • /
    • pp.295-310
    • /
    • 1999
  • Nowadays there are a lot of attempts and approaches in the Study of Oriental Medicine. The Morph&Image is one of them, and its importance is more and more increasing. Likewise, in the Sasang Consitutional Medicine, the Morph&Image is one of the important part too. And it is presented in the ${\ll}$Dorgyi SooseBowon(東醫壽世保元)${\gg}$. But that Discourse shows us only the concept and conclusion of Morph&Image, based on classification of Sasang Constitution, without explaining how it is derived. So the author studied the basic theory parts of ${\ll}$Dorgyi Soose Bowon${\gg}$-those are the , , , and - and wanted to find out the mechanism of Morph&Image concept in the Sasang Constitutional Medicine. The results were as follows. 1. Every portion of human body, can be considered as Morph&Image, in ${\ll}$Dorgyi Soose Bowon${\gg}$ could be explained in the line with the Sasang theory. Morph&Image in ${\ll}$Dorgyi Soose Bowon${\gg}$ contents not only the shape itself but also image, operation, mind condition, nature, emotion and so on. 2. The traditional Oriental Medicine has the Morph&Image categorized by Five elements(五行). And it is used for Oriental medical Diagnosis. But in the Sasang Constitution, Morph&Image is used for Sasang Constitutional classification. 3. The Morph&Image in Sasang could be classified into four groups. Affairs(事)- group(ears, eyes, nose, mouth(耳目鼻口) and so on), object(物)-group(lung, spleen, liver, kidney(肺脾肝腎)and soon), Mind(心)-group(jaw, chest navel, abdomen and so on) and Body(身)-group(head, shoulders, waist hips(頭肩腰臀) and so on) are those. Event and Object groups reflect the congenital conditions of Sasang-Classified human body, and Mind and Body groups reflect mind state, nature, emotion etc..

  • PDF

Records Management and Archives in Korea : Its Development and Prospects (한국 기록관리행정의 변천과 전망)

  • Nam, Hyo-Chai
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.1 no.1
    • /
    • pp.19-35
    • /
    • 2001
  • After almost one century of discontinuity in the archival tradition of Chosun dynasty, Korea entered the new age of records and archival management by legislating and executing the basic laws (The Records and Archives Management of Public Agencies Ad of 1999). Annals of Chosun dynasty recorded major historical facts of the five hundred years of national affairs. The Annals are major accomplishment in human history and rare in the world. It was possible because the Annals were composed of collected, selected and complied records of primary sources written and compiled by generations of historians, As important public records are needed to be preserved in original forms in modern archives, we had to develop and establish a modern archival system to appraise and select important national records for archival preservation. However, the colonialization of Korea deprived us of the opportunity to do the task, and our fine archival tradition was not succeeded. A centralized archival system began to develop since the establishment of GARS under the Ministry of Government Administration in 1969. GARS built a modem repository in Pusan in 1984 succeeding to the tradition of History Archives of Chosun dynasty. In 1998, GARS moved its headquarter to Taejon Government Complex and acquired state-of-the-art audio visual archives preservation facilities. From 1996, GARS introduced an automated archival management system to remedy the manual registration and management system complementing the preservation microfilming. Digitization of the holdings was the key project to provided the digital images of archives to users. To do this, the GARS purchased new computer/server systems and developed application softwares. Parallel to this direction, GARS drastically renovated its manpower composition toward a high level of professionalization by recruiting more archivists with historical and library science backgrounds. Conservators and computer system operators were also recruited. The new archival laws has been in effect from January 1, 2000. The new laws made following new changes in the field of records and archival administration in Korea. First, the laws regulate the records and archives of all public agencies including the Legislature, the Judiciary, the Administration, the constitutional institutions, Army, Navy, Air Force, and National Intelligence Service. A nation-wide unified records and archives management system became available. Second, public archives and records centers are to be established according to the level of the agency; a central archives at national level, special archives for the National Assembly and the Judiciary, local government archives for metropolitan cities and provinces, records center or special records center for administrative agencies. A records manager will be responsible for the records management of each administrative divisions. Third, the records in the public agencies are registered in the computer system as they are produced. Therefore, the records are traceable and will be searched or retrieved easily through internet or computer network. Fourth, qualified records managers and archivists who are professionally trained in the field of records management and archival science will be assigned mandatorily to guarantee the professional management of records and archives. Fifth, the illegal treatment of public records and archives constitutes a punishable crime. In the future, the public records find archival management will develop along with Korean government's 'Electronic Government Project.' Following changes are in prospect. First, public agencies will digitize paper records, audio-visual records, and publications as well as electronic documents, thus promoting administrative efficiency and productivity. Second, the National Assembly already established its Special Archives. The judiciary and the National Intelligence Service will follow it. More archives will be established at city and provincial levels. Third, the more our society develop into a knowledge-based information society, the more the records management function will become one of the important national government functions. As more universities, academic associations, and civil societies participate in promoting archival awareness and in establishing archival science, and more people realize the importance of the records and archives management up to the level of national public campaign, the records and archival management in Korea will develop significantly distinguishable from present practice.

Performance Analysis of Frequent Pattern Mining with Multiple Minimum Supports (다중 최소 임계치 기반 빈발 패턴 마이닝의 성능분석)

  • Ryang, Heungmo;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.1-8
    • /
    • 2013
  • Data mining techniques are used to find important and meaningful information from huge databases, and pattern mining is one of the significant data mining techniques. Pattern mining is a method of discovering useful patterns from the huge databases. Frequent pattern mining which is one of the pattern mining extracts patterns having higher frequencies than a minimum support threshold from databases, and the patterns are called frequent patterns. Traditional frequent pattern mining is based on a single minimum support threshold for the whole database to perform mining frequent patterns. This single support model implicitly supposes that all of the items in the database have the same nature. In real world applications, however, each item in databases can have relative characteristics, and thus an appropriate pattern mining technique which reflects the characteristics is required. In the framework of frequent pattern mining, where the natures of items are not considered, it needs to set the single minimum support threshold to a too low value for mining patterns containing rare items. It leads to too many patterns including meaningless items though. In contrast, we cannot mine any pattern if a too high threshold is used. This dilemma is called the rare item problem. To solve this problem, the initial researches proposed approximate approaches which split data into several groups according to item frequencies or group related rare items. However, these methods cannot find all of the frequent patterns including rare frequent patterns due to being based on approximate techniques. Hence, pattern mining model with multiple minimum supports is proposed in order to solve the rare item problem. In the model, each item has a corresponding minimum support threshold, called MIS (Minimum Item Support), and it is calculated based on item frequencies in databases. The multiple minimum supports model finds all of the rare frequent patterns without generating meaningless patterns and losing significant patterns by applying the MIS. Meanwhile, candidate patterns are extracted during a process of mining frequent patterns, and the only single minimum support is compared with frequencies of the candidate patterns in the single minimum support model. Therefore, the characteristics of items consist of the candidate patterns are not reflected. In addition, the rare item problem occurs in the model. In order to address this issue in the multiple minimum supports model, the minimum MIS value among all of the values of items in a candidate pattern is used as a minimum support threshold with respect to the candidate pattern for considering its characteristics. For efficiently mining frequent patterns including rare frequent patterns by adopting the above concept, tree based algorithms of the multiple minimum supports model sort items in a tree according to MIS descending order in contrast to those of the single minimum support model, where the items are ordered in frequency descending order. In this paper, we study the characteristics of the frequent pattern mining based on multiple minimum supports and conduct performance evaluation with a general frequent pattern mining algorithm in terms of runtime, memory usage, and scalability. Experimental results show that the multiple minimum supports based algorithm outperforms the single minimum support based one and demands more memory usage for MIS information. Moreover, the compared algorithms have a good scalability in the results.

Adaptive RFID anti-collision scheme using collision information and m-bit identification (충돌 정보와 m-bit인식을 이용한 적응형 RFID 충돌 방지 기법)

  • Lee, Je-Yul;Shin, Jongmin;Yang, Dongmin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.1-10
    • /
    • 2013
  • RFID(Radio Frequency Identification) system is non-contact identification technology. A basic RFID system consists of a reader, and a set of tags. RFID tags can be divided into active and passive tags. Active tags with power source allows their own operation execution and passive tags are small and low-cost. So passive tags are more suitable for distribution industry than active tags. A reader processes the information receiving from tags. RFID system achieves a fast identification of multiple tags using radio frequency. RFID systems has been applied into a variety of fields such as distribution, logistics, transportation, inventory management, access control, finance and etc. To encourage the introduction of RFID systems, several problems (price, size, power consumption, security) should be resolved. In this paper, we proposed an algorithm to significantly alleviate the collision problem caused by simultaneous responses of multiple tags. In the RFID systems, in anti-collision schemes, there are three methods: probabilistic, deterministic, and hybrid. In this paper, we introduce ALOHA-based protocol as a probabilistic method, and Tree-based protocol as a deterministic one. In Aloha-based protocols, time is divided into multiple slots. Tags randomly select their own IDs and transmit it. But Aloha-based protocol cannot guarantee that all tags are identified because they are probabilistic methods. In contrast, Tree-based protocols guarantee that a reader identifies all tags within the transmission range of the reader. In Tree-based protocols, a reader sends a query, and tags respond it with their own IDs. When a reader sends a query and two or more tags respond, a collision occurs. Then the reader makes and sends a new query. Frequent collisions make the identification performance degrade. Therefore, to identify tags quickly, it is necessary to reduce collisions efficiently. Each RFID tag has an ID of 96bit EPC(Electronic Product Code). The tags in a company or manufacturer have similar tag IDs with the same prefix. Unnecessary collisions occur while identifying multiple tags using Query Tree protocol. It results in growth of query-responses and idle time, which the identification time significantly increases. To solve this problem, Collision Tree protocol and M-ary Query Tree protocol have been proposed. However, in Collision Tree protocol and Query Tree protocol, only one bit is identified during one query-response. And, when similar tag IDs exist, M-ary Query Tree Protocol generates unnecessary query-responses. In this paper, we propose Adaptive M-ary Query Tree protocol that improves the identification performance using m-bit recognition, collision information of tag IDs, and prediction technique. We compare our proposed scheme with other Tree-based protocols under the same conditions. We show that our proposed scheme outperforms others in terms of identification time and identification efficiency.