
한국전산구조공학회 논문집 제37권 제4호(2024.8) 225

1. Introduction

Composite laminates have found extensive implementation 

across various industries, including aerospace, marine, and 

transportation, owing to their exceptional mechanical charac-

teristics, weight-saving capability, and outstanding design flexi-

bility (Azad et al., 2023; Rangappa et al., 2022). During opera-

tional use, composite laminates may encounter intricate external 

loads that generate substantial local stresses, leading to micro-

scale degradation and ultimately catastrophic structural fracture 

(Khalid and Kim, 2022; Khan and Kim, 2022). Considering the 

dependability and structural integrity of composite laminates, 

material scientists and engineers must understand their fracture 

mechanisms. The fracture mechanisms are commonly determined 

through fracture analysis which intends to evaluate the source of 

the fracture. The causes of the fracture are then avoided by 

redesigning the components through modifications in the con-

centration of their constituents or replacing their constituents 
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Abstract

This study focuses on the determination of the fracture mode in composite laminates using deep learning. With the increase in the use of 

laminated composites in numerous engineering applications, the insurance of their integrity and performance is of paramount importance. 

However, owing to the complex nature of these materials, the identification of fracture modes is often a tedious and time-consuming task that 

requires critical domain knowledge. Therefore, to alleviate these issues, this study aims to utilize modern artificial intelligence technology to 

automate the fractographic analysis of laminated composites. To accomplish this goal, scanning electron microscopy (SEM) images of 

fractured tensile test specimens are obtained from laminated composites to showcase various fracture modes. These SEM images are then 

categorized based on numerous fracture modes, including fiber breakage, fiber pull-out, mix-mode fracture, matrix brittle fracture, and matrix 

ductile fracture. Next, the collective data for all classes are divided into train, test, and validation datasets. Two state-of-the-art, deep 

learning-based pre-trained models, namely, DenseNet and GoogleNet, are trained to learn the discriminative features for each fracture mode. 

The DenseNet models shows training and testing accuracies of 94.01% and 75.49%, respectively, whereas those of the GoogleNet model are 

84.55% and 54.48%, respectively. The trained deep learning models are then validated on unseen validation datasets. This validation 

demonstrates that the DenseNet model, owing to its deeper architecture, can extract high-quality features, resulting in 84.44% validation 

accuracy. This value is 36.84% higher than that of the GoogleNet model. Hence, these results affirm that the DenseNet model is effective in 

performing fractographic analyses of laminated composites by predicting fracture modes with high precision.
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with superior materials. Thus, setting up quantitative relations 

that provide insights into the common sources of fracture with 

respect to the mechanical properties. These relationships do 

perform well analytically but have limited success practically 

due to the complex orthotropic nature of composite materials 

(Khalid and Kim, 2019). Moreover, there exists no global 

approach that can identify the complex fracture modes present in 

laminated composite structures (Khan et al., 2023).

Fractographic analysis, which involves visual inspection of 

the fractured surface of composite laminates, is an essential step 

in fracture analysis. Its purpose is to discover the surface-level 

attributes of the fracture mode, enabling the identification of 

propagation patterns and the source of the fracture (Mohammadi 

et al., 2024). By examining the fracture surfaces of composite 

materials, an initial fracture analysis can be performed to identify 

the underlying causes. The first step in this process is macro-

scopic observation, which can reveal preliminary traces of the 

factors that led to the fracture (Chen, 2020). However, the 

macroscopic information regarding the fracture and behavior of 

the composite remains insufficient, thereby hindering the ability 

to determine the underlying factors that initiated the fracture. By 

conducting a detailed examination through the utilization of a 

scanning electron microscope (SEM), the microscopic process 

of fracture propagation is characterized, thereby facilitating the 

identification of the underlying factors contributing to fracture, 

such as matrix or fiber fracture.

These microscopic observations are generally of interest to 

material scientists who continuously develop new composite 

materials based on vast applications of composites. However, 

due to the orthotropic nature of these materials and their con-

tinuous expansion in numerous industries, it is tedious and 

time-consuming to do manual decision-making. Moreover, com-

posite materials can have a broad range of fracture modes such 

as fiber breakage, fiber pull-out, multi-mode fracture, brittle 

matrix fracture, ductile matrix fracture, particle agglomeration, 

and so on, requiring materials scientists to have critical domain 

knowledge (Ejaz et al., 2022; Prabhakar et al., 2021). Mean-

while, in metallic materials automated fracture analysis has already 

found applications through the incorporation of intelligent com-

putational techniques such as machine learning and deep learning. 

The sudden ductile, sudden brittle, and progressive fatigue fracture 

of metallic materials demonstrated the effectiveness of using 

artificial neural networks (Bastidas-Rodriguez et al., 2016). Tsopanidis 

and Osovski used unsupervised machine learning to perform 

fractographic analysis of five tungsten-based alloys (Tsopanidis 

and Osovski, 2021). Similarly, another study performed ductile 

fracture analysis using different steel and aluminum-magnesium 

alloys (Avilés-Cruz et al., 2024). Another study determined 

ductile, brittle, and fatigue fractures in various steel and alumi-

num alloys using a UNet-based deep learning model (Tang et al., 

2024). All these findings confirm the importance of using modern 

machine learning and deep learning techniques to automate the 

decision-making process for fractographic analysis. However, 

the existing studies are restricted to fracture mode identification 

of metallic materials. Therefore, this research is focused on 

fracture analysis of composite laminates which possess an 

excessive range of fracture modes, unlike metallic materials that 

generally fail in brittle, ductile, or fatigue fracture modes.

This study for the first time developed a dataset comprising 

various fracture modes of composite laminates and used deep 

learning to perform autonomous fracture analysis. The developed 

dataset is collected from literature consisting of five basic 

fracture modes in composites namely: fiber breakage, fiber 

pull-out, mix-mode fracture, matrix ductile fracture, and matrix 

brittle fracture. The data is collected and sorted based on these 

mentioned fracture modes. Due to limited amounts of training 

data, instead of developing a model from scratch, the pre-trained 

transfer learning models are utilized. GoogleNet and DenseNet- 

based transfer learning models are trained and then evaluated 

using various evaluation metrics to assess their feasibility in 

composite fracture analysis. Finally, the results of the proposed 

models are presented in the form of training and testing 

accuracy. Moreover, the models are also validated on unseen 

validation datasets, whose performance is validated using 

accuracy, precision, recall, and f1-score.

2. Materials and Methods

This section describes the details of the dataset and the 

proposed methodology of this study. It also introduces the 

transfer learning-based models used in this study. 

2.1 Dataset

The dataset for the fractographic analysis includes a collection 

of SEM images from the published literature and additional 

images obtained during the fractographic analysis conducted in 
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the following literature (Ahmad et al., 2024; Azad et al., 2022; 

Ejaz et al., 2020; 2022; Li et al., 2017; Prabhakar et al., 2017; 

Shah et al., 2017; 2018; Zulfiqar et al., 2024). The SEM images 

were obtained from the fractured tensile test specimens for all 

cases. Thus, this study focuses on the tensile mode of fracture in 

composite laminates. The rationale for this choice lies in the 

significance of tensile properties in determining the overall 

strength and durability of composite materials. The fracture 

modes can provide different features at different magnifications. 

Therefore, the SEM images were collected at magnifications 

such as ×100, ×300 and ×500. Such diversity of data will allow 

the deep learning model to learn features of fracture modes at 

different magnifications helping improve the generalization 

ability of the model. The obtained data consists of 222 SEM 

images belonging to five fracture modes. These include three 

fracture modes of the fibers and two fracture modes of the matrix 

material. The five fracture modes are fiber breakage (FB), fiber 

pull-out (FP), mix-mode fracture (MMF), matrix brittle fracture 

(MBF), and matrix ductile fracture (MDF). The classes are 

defined through careful examination of SEM images based on 

the observed fracture mode. The representative image of each 

class is shown in Fig. 1. FB is defined as the fracture mode of 

individual reinforcing fibers within the composite laminate, 

leading to a significant reduction in load-bearing capacity and 

structural integrity. FP refers to the fracture mode where 

reinforcing fibers are pulled out of the matrix material, rather 

than breaking, resulting in a loss of load transfer efficiency and 

structural strength. In MMF, multiple fracture mechanisms, such 

as fiber breakage, matrix cracking, and fiber pull-out, occur 

simultaneously or sequentially, leading to complex and uncertain 

degradation. MBF represents the matrix fracture where matrix 

material fractures in a brittle manner, resulting in the formation 

of cracks that compromise the composite’s structural integrity. 

MDF refers to the fracture mode where the matrix material 

undergoes significant plastic deformation before fracturing, 

leading to energy absorption and progressive damage accumulation. 

Composite laminates comprise either thermosets or thermoplastic 

matrix materials. The obtained data comprises both matrix materials, 

helping characterize both MBF and MDF. Thus, incorporating 

both types of matrix materials and numerous fibers, this study 

addresses the diverse fracture modes of composites. 

2.2 Transfer learning-based methodology

Deep learning models require immense amounts of data to 

train effectively, learn complex patterns, and achieve high- 

performance (Lee et al., 2019). However, acquiring such extensive 

datasets can be challenging and resource-intensive in the current 

research due to the associated cost and time to conduct SEM 

analysis. Therefore, this research utilizes the transfer learning 

concept which allows deep learning models to pre-train on large 

general-purpose source datasets and apply them to smaller target 

datasets (Azad et al., 2024). Thus, the transfer of knowledge 

concept is helpful in significantly reducing the required amount 

of data and computational resources, while still achieving robust 

and accurate results in specialized applications. This research 

utilizes the transfer learning concept through DenseNet and 

GoogleNet-based pre-trained models due to their promising 

performance in various computer vision tasks. The concept of 

transfer learning adopted in this study is shown in Fig. 2. Herein, 

the ImageNet data is used as the source data. ImageNet is a 

large-scale public dataset designed for use in visual object re-

cognition research, containing millions of labeled images across 

thousands of categories. It is widely used for training and ben-

chmarking deep learning models in image classification and 

other computer vision tasks. The ImageNet source data is used to 

pre-train the deep learning models which helps initialize their 

weights and pre-learn the features and patterns from image data 

for improved performance and faster convergence when fine- 

tuned on target SEM image data in a later stage. 
Fig. 1  The five major fracture modes present in the dataset 

comprising different fiber and matrix-based modes
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The original DenseNet and GoogleNet models trained on 

ImageNet data can provide a classification of thousands of classes 

present in the original data. However, when utilizing this model 

in the target domain of SEM images, the final classification layer 

is removed, and a new classification layer is added based on the 

number of classes in the target data. Further architectural details 

of the pre-trained models are shown in Fig. 3. 

The GoogleNet model was first developed in 2014, by resear-

chers at Google, while its InceptionV3 variant known for its 

efficient architecture that combines various convolutional filter 

sizes through Inception modules was proposed in 2015 (Szegedy 

et al., 2015). For the GoogleNet model, its latest InceptionV3 

variant is utilized in this study. It achieves high accuracy on 

image classification tasks with reduced computational cost by 

utilizing techniques like factorized convolutions and batch 

normalization. InceptionV3 is widely used in computer vision 

applications due to its balance of depth, performance, and 

efficiency. The last layer of the GoogleNet model is also replaced 

with a global pooling layer and a five-neuron dense layer for 

SEM image classification. The global average pooling layer 

condenses each feature map to a single value by computing the 

average of all its elements, effectively summarizing the feature 

information. The five-neuron dense layer is a fully connected 

neural network layer with five neurons, each producing an 

output that typically corresponds to one of five possible classes 

FB, FP, MMF, MBF, and MDF.

The Densely Connected Convolutional Network (DenseNet) 

model was developed in 2017 (Huang et al., 2017), and its 

specific variant featuring 121 layers called DenseNet121 has 

been used in this study. The DenseNet model is designed to 

promote efficient feature reuse by connecting each layer to the 

next layer in a feed-forward manner helping alleviate the 

vanishing gradient problem. DenseNet121 is known for its high 

performance on image classification tasks while maintaining 

computational efficiency, making it a state-of-the-art choice for 

various computer vision applications. For this study, the last 

layer (classification layer) of the original DenseNet model is 

removed and replaced with a global pooling layer and a 

five-neuron dense layer. Therefore, in Fig. 3, the red locks show 

layers of the respective models that are trained on the source data 

only, while the green unlocked locks denote the trainable layers 

that are changed for the target SEM images dataset for fracture 

mode determination of laminated composites.

3. Results and Discussion

The proposed transfer learning concept for fracture mode 

determination of composite laminates is validated using Python 

programming language in Jupyter Notebook with a TensorFlow 

environment. Initially, the raw SEM images were pre-processed 

to make data suitable for the learning of the deep learning model. 

Generally, the SEM images obtained from the experiments 

contain text representing the resolution, experimental conditions, 

and specifications of the machine. Such information on the 

Fig. 2  The concept of transfer learning utilized in this study to 

overcome the limited data issue

Fig. 3  The architectural details of the DenseNet and GoogleNet-based 

transfer learning models, showing the trainable and untrainable 

layers for pre-training on source data and tuning on target data
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images can affect the learning capability of the deep learning 

models. Therefore, all SEM images were cropped to exclude 

unnecessary text and cropped to only include the region 

containing the fracture mode information. The pre-processed 

images are then split into three sets: training, testing, and 

validation, containing 70%, 15%, and 15% data, respectively. 

The training and test data are utilized to tune the pre-trained 

models on SEM images, and later the validation data is used to 

validate the developed models. All trainable parameters of both 

models are kept identical to compare their performance on the 

same datasets. Therefore, a SoftMax activation is used in the 

classification layer of both models. The models are trained for 

40 epochs using an Adam optimizer with a learning rate of 10-4. 

Moreover, a sparse categorical cross-entropy loss function is 

used during training due to multi-class classification. To provide 

a robust and reliable estimate of model performance, both 

models are developed using a 10-fold cross-validation approach. 

Herein, the train and test sets are combined and then divided into 

ten sets, where in each fold nine sets are used for training and 

one set is used for testing. The results from 10-fold cross- 

validation for the DenseNet and GoogleNet models are shown in 

Table 1. The training results demonstrated that both models can 

effectively learn the pattern and features from SEM images for 

each fracture mode. The DenseNet model exhibited an average 

training accuracy of 94.01%, and the GoogleNet model exhibited 

an average training accuracy of 84.55%. However, on the test 

data, the accuracy of both models dropped which is common in 

deep learning, but the drop in accuracy is significant for the 

GoogleNet model. This depicts that the GoogleNet model is 

unable to generalize well for the new data demonstrating 

overfitting. Moreover, the DenseNet model possesses a deeper 

architecture compared to the GoogleNet model, which signifies 

that the complexity of the fracture modes in composite laminates 

can’t be learned well by the shallow model, and a deeper model 

is required to recognize the pattern for each fracture mode. Thus, 

the significant performance drop of GoogleNet compared to 

DenseNet is attributed to their architectural differences. The 

deeper DenseNet architecture and dense connectivity facilitate 

better feature reuse and gradient flow, which enhances its ability 

to generalize well to new data. This dense connectivity allows 

DenseNet to effectively utilize features learned in earlier layers, 

providing an inherent regularization effect that mitigates overfitting 

and improves generalization performance. In contrast, GoogleNet, 

with its more traditional deep network structure and less 

extensive feature reuse, struggles to achieve the same level of 

parameter efficiency and regularization. Therefore, the overfitting 

issue is more prominent in the GoogleNet model.

The trained models tuned on the SEM image data are saved 

and then validated on unseen validation data to assess their 

performance. For deeper insights into the performance of both 

models, multiple evaluation metrics have been used instead of 

accuracy alone. Fig. 4 compares the performance of DenseNet 

and GoogleNet models across four evaluation metrics: accuracy, 

precision, recall, and f1-score. A detailed description of the 

evaluation metrics can be found in the following literature (Azad 

and Kim, 2024). DenseNet model outperforms the GoogleNet 

Table 1  Training and testing accuracies of DenseNet and 

GoogleNet models using 10-fold cross-validation

Folds

DenseNet GoogleNet

Train 

accuracy (%)

Test

accuracy (%)

Train 

accuracy (%)

Test

accuracy (%)

Fold-1 93.93 88.06 84.17 59.72

Fold-2 93.95 87.50 83.49 63.89

Fold-3 93.82 66.25 84.86 48.75

Fold-4 93.58 72.50 86.24 49.72

Fold-5 94.51 68.19 81.45 50.00

Fold-6 93.66 80.56 82.80 54.17

Fold-7 93.84 76.67 85.74 57.50

Fold-8 94.38 74.41 87.12 70.00

Fold-9 94.47 63.38 86.16 36.03

Fold-10 94.00 77.35 83.45 55.00

Average 94.01 ± 0.31 75.49 ± 7.93 84.55 ± 3.51 54.48 ± 8.84

Fig. 4  The comparison of the performance of DenseNet and 

GoogleNet models based on various evaluation metrics
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model in all metrics. Specifically, the DenseNet model achieved 

84.44% accuracy, 86.06% precision, 76.13% recall, and 79.23% 

f1-score. In contrast, the GoogleNet model achieved only 53.33% 

accuracy, 50.56% precision, 47.56% recall, and 48.08% f1-score. 

These results suggest that DenseNet is more effective in correctly 

classifying the fracture mode of composite laminates even on 

unseen data, demonstrating better overall performance and 

reliability. The higher recall and F1-score indicate that DenseNet 

has a balanced ability to detect relevant instances and minimize 

both false positives and false negatives, making it a more robust 

model for composite fracture mode prediction. The confusion 

matrix for both models is shown in Fig. 5. The diagonal terms in 

the confusion matrix represent the accurately predicted instances, 

while the non-diagonal terms represent the inaccurately predicted 

instances. It can be observed that the DenseNet model predicted 

each fracture mode with higher accuracy compared to the 

GoogleNet model. In both models, the highest confusion is 

between the fiber-based failure modes and matrix-based failure 

modes. However, the DenseNet model has predicted the MMF 

with 100%, with marginal confusion between FB and FP. 

Additionally, the most performance drop in DenseNet is due to 

the confusion between the MBF and MDF. This confusion is 

attributed to the limited data available for these two classes, as it 

is difficult to obtain excessive matrix-based fracture mode 

images in composite laminates. Therefore, approaches like data 

augmentation can be used to increase the quantity of data in 

these two classes to improve the prediction accuracy for 

matrix-based failure modes.

4. Conclusion

This study presents the first step in performing fracture mode 

identification of composite laminates using deep learning. Generally, 

the fracture surface analysis of laminated composites is per-

formed by manual inspection of the SEM images of the fractured 

surfaces. However, this makes the process tedious and requires a 

lot of time and effort to identify the fracture mode. This is due to 

the complex modes of fiber and matrix fractures present in 

laminated composites, unlike the metallic materials that generally 

fail in ductile, brittle, or fatigue modes only. Therefore, this 

study proposes an autonomous fracture mode determination of 

laminated composites using deep learning, eliminating the need 

for manual inspection. The proposed approach is implemented 

using the transfer learning concept utilizing the pre-trained 

DenseNet and GoogleNet models. Both pre-trained models are 

developed using identical training, testing, and validation datasets. 

During training the DenseNet and GoogleNet models showed an 

accuracy of 94.01% and 84.55%, respectively. Upon validation 

on the unseen validation dataset, the DenseNet model showed an 

accuracy of 84.44%, while the accuracy of the GoogleNet model 

dropped significantly to 53.33%. Other evaluation metrics also 

demonstrated that the DenseNet model can perform well for 

fracture model determination of composite laminates due to its 

excessively deep architecture. Therefore, the proposed DenseNet 

model can be adopted by material scientists and engineers for 

autonomous fracture mode determination in novel composite 

laminates to expand their applications in numerous industries. 

However, it should be noted that there is still a possibility of 

further improving the performance of the models. Thus, in the 

future other deeper pre-trained models such as ResNet, VGG-16, 

VGG-19, MobileNet, and Xception can also be analyzed along 
Fig. 5  The confusion matrix for the (a) DenseNet and (b) 

GoogleNet model
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with the utilization of data augmentation techniques to provide 

improved fracture mode determination of composite laminates. 

Moreover, future work can also use drop-out and other regul-

arization techniques to reduce overfitting by adding several 

more layers during the fine-tuning process.
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요  지

본 논문에서는 딥러닝을 활용하여 복합재 적층판의 파괴 모드를 결정하는 방법을 제안하였다. 수많은 엔지니어링 응용 분야에서 

적층 복합재의 사용이 증가함에 따라 무결성과 성능을 보장하는 것이 중요해졌다. 그러나 재료의 이방성으로 인해 복잡하게 나타나

는 파괴모드를 식별하는 것은 도메인 지식이 필요하고, 시간이 많이 드는 작업이다. 따라서 이러한 문제를 해결하기 위해 본 연구에서

는 인공 지능(AI) 기술을 활용하여 적층 복합재의 파괴 모드 분석을 자동화하는 것을 목표로 하였다. 이 목표를 달성하기 위해 적층된 

복합재에서 파손된 인장 시험편의 주사 전자 현미경(SEM) 이미지를 얻어 다양한 파괴 모드를 확보하였다. 이러한 SEM 이미지는 섬

유 파손, 섬유 풀아웃, 혼합 모드 파괴, 매트릭스 취성 파손 및 매트릭스 연성 파손과 같은 다양한 파손 모드를 기준으로 분류하였다. 다

음으로 모든 클래스의 집합 데이터를 학습, 테스트, 검증 데이터 세트로 구분하였다. 두 가지 딥 러닝 기반 사전 훈련 모델인 DenseNet

과 GoogleNet을 이용해 각 파괴 모드에 대한 차별적 특징을 학습하도록 훈련하였다. DenseNet 및 GoogleNet 모델은 각각 (94.01% 및 

75.49%) 및 (84.55% 및 54.48%)의 훈련 및 테스트 정확도를 보여주었다. 그런 다음 훈련된 딥 러닝 모델은 검증 데이터 세트를 활용해 

검증하였다. 더 깊은 아키텍처로 인해 DenseNet 모델이 고품질 특징을 추출하여 84.44% 검증 정확도(GoogleNet 모델보다 36.84% 더 

높음)를 얻을 수 있음을 확인하였다. 이는 DenseNet 모델이 높은 정밀도로 파괴 모드를 예측함으로써 적층 복합재의 파손 분석을 수행

하는 데 효과적이라는 것을 알 수 있다.

핵심용어 : 딥 러닝, 파괴 모드, 적층 복합재, 전이 학습, DenseNet, GoogleNet


