• Title/Summary/Keyword: 응력-변형율 특성

Search Result 169, Processing Time 0.107 seconds

Study on Fatigue Behavior of Carbon Fiber Reinforced Polyimide Composites (탄소섬유강화 복합적층판의 피로특성에 관한 연구)

  • 이창수;황운봉;한경섭;윤병일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.49-60
    • /
    • 1991
  • Fatigue behavior of carbon fiber reinforced polyimide composite materials was studied experimentally and analytically. The physical variables, such as cyclic displacements and hysteresis loop energy were observed during fatigue tests. Fatigue life of the investigated [0/90]$_{2S}$ laminates was predicted by H'||'&'||'H models which was proposed based on the fatigue modulus and resultant strain. The predicted fatigue life by H'||'&'||'H curves was reasonably close to the experimental data. Fractography study shows that fatigue failure mechanism of [0/90]$_{2S}$ laminated composite materials involves failure break, matrix tearing and fiber-matrix debonding as well as delamination of layers.

The Study on Liquefaction Characteristics of Silty Sand Soils by Cyclic Triaxial Test (반복삼축시험에 의한 실트 모래 지반의 액상화 특성 연구)

  • Lee, Song;Jeon, Je-Sung;Kim, Tae-Hwun
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.133-152
    • /
    • 1999
  • The cyclic triaxial test was carried out to research liquefaction characteristics and sample disturbance effects of silty sand soils at the west coast in Korea. First, liquefaction in silty sand was generated when axial strain approached to $\pm10%$ of strain and behavior of pore pressure was similar to the formula suggested by Seed, Martin, and Lysmer(1975). Also, it was found that dilatancy was generated at failure. Secondly, the liquefaction evaluation methods suggested by many researchers were carried out and the results were compared. In these methods the weak depth in liquefaction was similar and the method carried out by cyclic triaxial test on remolded sample showed the least safety factor. Thirdly the stress ratio by cyclic triaxial test was compared with that obtained from SPT N-value as a kind of empirical methods. It was found that the effect of sample disturbance was relatively small when SPT N-value was less than 20, but there were large differences in safety factor and resistance of liquefaction in soil by the effects of disturbance and remolding when SPT N-value was more than 20.

  • PDF

Mechanical Properties and Microstructural Analysis of Sn-40Bi-X Alloys (Sn-40Bi-X 합금의 기계적 물성과 미세조직 분석)

  • Lee, Jong-Hyun;Kim, Ju-Hyung;Hyun, Chang-Yong
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.79-79
    • /
    • 2010
  • 저온용 무연 솔더의 대표 조성으로 고려되고 있는 Sn-58Bi(융점: $138^{\circ}C$) 공정(eutectic) 조성은 우수한 강도에도 불구하고 연성(ductility) 측면에서의 문제점이 지속적으로 보고되고 있다. 따라서 이 합금계의 연성을 최대로 개선시킬 수 있으면서도 실제 상용화가 가능한 합금 조성의 개발 연구가 요청된다. 본 연구에서는 Sn-Bi 2원계 조성에서 최대의 연성을 나타내는 것으로 보고된 Sn-40Bi 조성에 미량의 합금원소를 첨가함으로써 최대의 연성을 확보하는 한편, 그 연성 특성이 변형속도에 어느 정도 민감한지를 인장 실험을 통해 결정하고자 하였다. 합금원소로는 0.1~0.5 wt%의 Ag, Mn, In, Cu를 선택하였으며, 인장 시편을 제조하여 $10^{-2}$, $10^{-3}$, $10^{-4}\;s^{-1}$의 3종류로 변형속도를 변형시켜가며 응력-변형 곡선(stress-strain curve)을 측정하였고, 조성별, 변형속도별로 최대인장강도(ultimate tensile stress, UTS) 및 연신율 결과들을 정리하였다. 합금원소를 첨가한 조성의 경우는 모든 시험 조건에서 Sn-40Bi보다 우수한 연신률을 나타내는 것으로 측정되었으나, $10^{-2}\;s^{-1}$의 빠른 변형속도에서는 그 향상 정도가 상대적으로 감소하는 경향이 관찰되었다. 특히 Sn-40Bi-0.5Ag 조성의 경우 느린 변형속도에서 특히 눈에 띄는 연신률 값을 나타내며, 모든 변형속도 조건에서 가장 우수한 연성을 나타내었다. 한편 Sn-40Bi-0.1Cu 조성의 경우 변형속도에 따른 연신률의 변화 정도, 즉, 변형속도에 따른 연신률의 민감도가 매우 커 $10^{-4}\;s^{-1}$ 속도에서는 Sn-40Bi-0.5Ag에 버금가는 연신률 값이 측정되었으나, $10^{-2}\;s^{-1}$ 속도에서는 가장 나쁜 연신률 특성을 보여주었다. Sn-40Bi-0.2Mn 조성은 최고의 연신률 향상 특성을 나타내지는 않았으나, In을 첨가한 경우보다는 대체적으로 우수한 연성을 나타내었다. 이상의 각 합금별 연성 특성은 인장시험 전의 미세조직 관찰 결과와 인장시험 후 파면부의 조직변화 관찰 결과로부터 해석되었다. 그 결과 석출상의 형성 여부, 인장 시험 중 재결정 조직의 형성 여부, 라멜라(lamellar) 조직의 분율과 라멜라 간격(lamellar spacing)의 정도 또는 $\beta$-Sn과 라멜라 조직 사이의 결정립계와 라멜라 조직 내 결정립계에서의 슬라이딩 모드(sliding mode) 변형 정도, 석출상의 크기와 분포 정도 등이 연신률 및 변형속도 민감도와 같은 연성 특성에 가장 큰 영향을 미치는 인자인 것으로 분석되었다.

  • PDF

A Study on the Formulation and Mechanical Properties of AN-based Composite Solid Propellant for an Application to Gas Generators (기체발생기용 질산암모늄 산화제 기반 복합고체추진제의 조성 및 기계적 물성)

  • Park, Jeong;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.1-6
    • /
    • 2009
  • A development of a composite solid propellant is carried out for an application to gas generators as an energy source of rocket system. With HTPB as a propellant binder which has 80% of particle loading ratio, a favorable rheology, and moderate curing properties at the range of $-50^{\circ}{\sim}70^{\circ}C$, AN is selected as the first kind of oxidizer having the characteristics of a low flame temperature, minimal particle residual as well as nontoxic products. AP is the second oxidant for ballistic property control. A series of experiments for the improvement of physical properties were conducted and resulted in the propellant formulation having 30% of strain rate at 8 bar of max. stress.

Characteristics of Bond Behavior According to Confinement and Stiffness Ratios of External Confining Jackets (외부구속자켓의 구속비와 강도비에 따른 콘크리트 부착거동의 특성)

  • Choi, Eunsoo;Jung, Chunsung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.87-94
    • /
    • 2014
  • This study analyzes the characteristics of bond behavior of concrete, which is confined by external jackets such as shape memory alloy (SMA) and steel, according to confinement and stiffness ratios of the external jackets. For this purpose, SMA wires with 1.0 mm diameter and steel plates with 1.0 and 1.5 thickness are used to induce difference on confinement and stiffness ratios and, then, bond strength and behavior are analyzed considering the two factors. When external jakcets are used for the concrete cylinders, bond strengths of specimens increase and their bond failures are transferred from splitting failure to pull-out failure and, thus, the external jackets show confining effect. Bond strenght of concrete increase with increasing confinement and stiffness ratios of the external jackets. However, maximal circumferential strains decrease linearly with increasing the two values.

Engineering Characteristics of Crushed Rockfill Material

  • Lee, Young-Huy
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.63-76
    • /
    • 1997
  • To investigate the engineering characteristics of crushed rockfill material, the large-scaled triaxial tests have been carried out, The rpckfill is made from the greywacke, and the 3 parallel gradations with different maximum particle size(dmu=38.1mm, 25.4mm and 19.1mm) were designed for the test. The dimension of the specimen is 300mm in diameter and 600mm in height, and the applied confining stress varied from 5t/$51.6^{\circ}$ to 60t/$51.6^{\circ}$. The test results show that the influence of the maximum particle size on the stress -strain r$51.6^{\circ}\; to\; 40.5^{\circ}$ when the confining stress increases from 5t/$51.6^{\circ}$ to 60t/$51.6^{\circ}$ The hyperbolic parameter values estimated from the test result for rockfill are much different from the recommended values by Duncan et. at(1980) for GW and GP material, especially in the $\phi$ ad K-values.

  • PDF

Undrained Characteristics of Geogrid-Encased Stone Column under Cyclic Load Using Reduced-Scale Model Tests (축소모형실험에 의한 반복하중 작용시 지오그리드 감쌈 쇄석말뚝의 비배수 거동 특성)

  • Choi, Jin-Wook;Lee, Dae-Young;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.109-120
    • /
    • 2013
  • This paper presents the results of a laboratory investigation into a study on undrained characteristics of a geogrid-encased stone column (GESC) installed in soft clay under cyclic load. In order to analyze behavior of settlement, pore water pressure, stress concentration ratio and strain of the GESC compared to a stone column, a series of reduced-scale laboratory tests were performed. The model tests show that GESC provides a simple and effective method of deformation resistance and settlement restraint when a short-term cyclic load is applied. The maximum strain of geogrid occurred at 1.2D and 1.5D from the top of the column. This paper highlights the importance of considering overlay effect and replacement ratio on cyclic load supporting GESC.

Effects of Crack Velocity on Fracture Properties of Modified S-FPZ Model (수정 특이-파괴진행대이론의 파괴특성에 대한 균열속도의 영향)

  • Yon Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.511-520
    • /
    • 2004
  • The fracture energy evaluated from the previous experimental results can be simulated by using the modified singular fracture process zone (S-FPZ) model. The fracture model has two fracture properties of strain energy release rate for crack extension and crack close stress versus crack width relationship $f_{ccs}$ ( w ) for fracture process zone (FPZ) development. The $f_{ccs}$( w ) relationship is not sensitive to specimen geometry and crack velocity. The fracture energy rate in the FPZ increases linearly with crack extension until the FPZ is fully developed. The fracture criterion of the strain energy release rate depends on specimen geometry and crack velocity as a function of crack extension. The variation of strain energy release rate with crack extension can explain theoretically the micro-cracking, micro-crack localization and full development of the FPZ in concrete.

A Study of Engineering Properties of Rock Mass Weathered by Sea water (해수에 의한 암반 풍화의 공학적 특성 연구)

  • Choi Kang-Il;Kang Coo-Won;Go Chin-Surk
    • Explosives and Blasting
    • /
    • v.23 no.1
    • /
    • pp.9-17
    • /
    • 2005
  • This study is to clarify the comparative relationship and mechanical anisotropy of granite distributed in the Nam-weon on the subject of weathered rock mass sea water surroundings. Artificial weathering test is defined as a test, which controls the weathering rate and agents by controlling the weathering rate and agents by artificial environmental of salt water. Increased weathering degree is large indicated by weathering salt water, such as apparent specific gravity, absorption, porosity, uniaxial compression strength, P-wave velocity, slake durability, shore hardness, indirect tensile strength(brazilian test) and cohesion were measured. As the Weathering salt water proceeds, cracks develope increasingly. A number the cracks affect the rock deformation. Therefore, stress-strain curve of weathered salt water rock in one confined state are quite differ from weathered fresh water rock those. A reason of their deformation type is the formation of micro-cracks and potential porosity caused by artificial weathering test.

Analysis of the Strength Characteristics of Hair Fiber Reinforced Caly Soil (헤어섬유로 보강된 점토흙의 강도 특성 분석)

  • Son, Moorak;Song, Hwasun;Lee, Jaeyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.15-25
    • /
    • 2015
  • This study aimed at the strength increase of the soft ground and analyzed the strength characteristics of clay soil reinforced with hair fiber which is environmentally friendly. The study varied the length of hair fiber, the amount of hair fiber, the amount of cement, and curing days to investigate both the compressive and tensile strengths and the stress-strain relationship of hair fiber mixed clay soils. The test results indicated that both the compressvie and tensile strengths increased with hair fiber mixed, especially in the tensile strength. In addition, the hair fiber mixed clay soil allowed larger displacement to failure. Based on the test results, it is thought that the environmentally friendly hair fiber could be utilized practically to increase the clay strength in the future.