• Title/Summary/Keyword: 응력해방법

Search Result 16, Processing Time 0.026 seconds

Numerical Study on Inverse Analysis Based on Levenberg-Marquardt Method to Predict Mode-I Adhesive Behavior of Fiber Metal Laminate (섬유금속적층판의 모드 I 접합 거동 예측을 위한 Levenberg-Marquardt 기법 기반의 역해석 기법에 관한 수치적 연구)

  • Park, Eu-Tteum;Lee, Youngheon;Kim, Jeong;Kang, Beom-Soo;Song, Woojin
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.177-185
    • /
    • 2018
  • Fiber metal laminate (FML) is a type of hybrid composites which consist of metallic and fiber-reinforced plastic sheets. As the FML has a drawback of the delamination that is a failure of the interfacial adhesive layer, the nominal stresses and the energy release rates should be determined to identify the delamination behavior. However, it is difficult to derive the nominal stresses and the energy release rates since the operating temperature of the equipment is restricted. For this reason, the objective of this paper is to predict the mode-I nominal stress and the mode-I energy release rate of the adhesive layer using the inverse analysis based on the Levenberg-Marquardt method. First, the mode-I nominal stress was assumed as the tensile strength of the adhesive layer, and the mode-I energy release rate was obtained from the double cantilever beam test. Next, the finite element method was applied to predict the mode-I delamination behavior. Finally, the mode-I nominal stress and the mode-I energy release rate were predicted by the inverse analysis. In addition, the convergence of the parameters was validated by trying to input two cases of the initial parameters. Consequently, it is noted that the inverse analysis can predict the mode-I delamination behavior, and the two input parameters were converged to similar values.

Determination of Energy Release Rate of Penny-shaped Interface Crack on Bimaterial Cylinder (동전모양 균열이 존재하는 이상복합체의 에너지해방율 산정)

  • 양성철;서영찬;박종원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.389-398
    • /
    • 2002
  • The mixed mode problem (I and II) of a peny-shaped interface cracks in remote tension loading on a bi-material cylinder is studied using finite element method. The energy release rates for the tip of the crack in the interface were calibrated for several different moduli combinations and crack ratios using the modified crack closure integral technique and J-integral method, with numerical results obtained from a commercial finite element program. Numerical results show that non-dimensional value of$\sqrt{G_{II}E^*}/\sqrt[p]{\pi a}$ increases as the crack size or moduli ratio increases. Meanwhile, non-dimensional value of$\sqrt{G_{I}E^*}/\sqrt[p]{\pi a}$ decreases as the moduli ratio increases, but above the moduli ratio of 3 its value decreases then increases again as the crack size increases. Reliability of the numerical analysis in this study was acquired with comparison to an analytical solution for the peny-shaped interface crack in an infinite medium.

In-Situ Stress Measurements for Excavation of Deep Cavern (대심도 지하 공간 굴착을 위한 초기지압 측정 결과)

  • Lee, Hong-Gyu
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.567-582
    • /
    • 2009
  • The world's largest nucleon decay experiment facility is constructed at a depth of approximately 1,000meters, in the Kamioka mine, Japan. Because of the character as a large cavern in deep underground, in-situ stress measurements were conducted to provide basic information for design of the cavern. Three overcoring methods were used: 8-element embedding gauges developed by Japanese Central Research Institute of Electric Power Industry, hemispherical ended borehole technique with eight strain cross-gauges, and Hollow Inclusion Cell with 12 strain gauges. The principle stresses were not perfectly similar in each measurement. The average values of the 6 stress element were used to provide the direction and the magnitude of three principle stress.

A Study on Energy Release Rate for Interface Cracks in Pseudo-isotropic Dissimilar Materials (유사등방성 이종재 접합계면 균열의 에너지 해방률에 관한 연구)

  • 이원욱;김진광;조상봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.193-200
    • /
    • 2003
  • The energy release rate for an interface crack in pseudo-isotropic dissimilar materials was obtained by the eigenfunction expansion method using the two-term William's type complex stress function. The complex stress function for pseudo-isotropic materials must be different from that for anisotropic materials. The energy release rate for an interface crack in pseudo-isotropic dissimilar materials was analyzed numerically by RWCIM. The results obtained were verified by comparing the other worker's results and discussed.

A Novel Method for In Situ Stress Measurement by Cryogenic Thermal Cracking - Concept Theory and Numerical Simulation (저온 열균열 현상을 이용한 초기 응력 측정법 - 개념, 이론 및 수치해석)

  • Ryu, Chang-Ha;Ryu, Dong-Woo;Choi, Byung-Hee;Synn, Dong-Ho;Loui, John P.
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.343-354
    • /
    • 2008
  • A new method is suggested herein to measure the virgin earth stresses by means of a borehole. This novel concept is basically a combination of borehole stress relieving and borehole fracturing techniques. The destressing of the borehole is achieved by means of inducing thermal tensile stresses at the borehole periphery by using a cryogenic fluid such as Liquid Nitrogen($LN_2$). The borehole wall eventually develops fractures when the induced thermal stresses exceed the existing compressive stresses at the borehole periphery in addition to the tensile strength of the rock. The above concept is theoretically analyzed for its potential applicability to interpret in situ stress levels from the tensile fracture stresses and the corresponding borehole wall temperatures. Coupled thermo-mechanical numerical simulations are also conducted using FLAC3D, with thermal option, to check the validity of the proposed techniques. From the preliminary theoretical and numerical analysis, the method suggested for the measurement of in situ stresses appears to be capable of accurate estimation of the virgin stresses by monitoring tensile crack formation at a borehole wall and recording the wall temperatures at the time of crack initiation.

A Study on Composite Blade Analysis Library Development through Dimension Reduction/Recovery and Calculating Energy Release Rate (단면의 차원축소/복원해석과 에너지 해방률 계산을 위한 복합재 블레이드 해석 라이브러리 개발에 대한 연구)

  • Jang, Jun Hwan;Ahn, Sang Ho
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.16-23
    • /
    • 2016
  • In this paper, numerical results of sectional analysis, stress recovery and energy release rate were compared with the results of VABS, 3-D FEM through the blade analysis library. The result of stress recovery analysis for one-dimensional model including the stiffness matrix is compared with stress results of three-dimensional FEM. We discuss the configuration of the blade analysis library and compare verifications of numerical analysis results of VABS. Blade analysis library through dimensional reduction and stress recovery is intended to be utilized in conjunction with pre- and post-processing of the analysis program of the composite blade, high-altitude uav's wing, wind blades and tilt rotor blade.

A Study on Energy Release Rate for Interface Cracks in Anisotropic Dissimilar Materials (이방성 이종재 접합계면 균열의 에너지 해방률에 관한 연구)

  • Kim, Jin-Gwang;Jo, Sang-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1835-1843
    • /
    • 2001
  • The energy release rate for an interface crack in anisotropic dissimilar materials was obtained by the eigenfunction expansion method and also was analyzed numerically by the reciprocal work contour integral method. It was shown that the results for orthotropic dissimilar materials are consistent with the other worker's results.

A Study on Energy Release Rate for Interface Cracks in Pseudo-isotropic Dissimilar Materials (유사등방성 이종재 접합계면 균열의 에너지해방률에 대한 연구)

  • 이원욱;김진광;조상봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.752-754
    • /
    • 1997
  • The stress intensity factor for an interface crack in dissimilar materials has been obtained by many researchers. But research of the energy release rate for an interface crack in pseudo-isotropic dissimilar materials is insufficient yet. In this paper, the energy release rate for cracks in pseudo-isotropic dissimilar materials was obtained using eigenfunction expansion method and also analyzed numerically using the reciprocal work contour integral method. The results were verified by comparing with other worker's results.

  • PDF

Evaluation of Free-Edge Delamination in Composite Laminates (복합재 적층판의 자유단 층간분리의 평가)

  • 김인권;공창덕;방조혁
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2001
  • A simplified method for determining the three mode(I, II, III) components of the strain energy release rate of free-edge delaminations in composite laminates is proposed. The interlaminar stresses are evaluated using the interface moment and the interface shear forces which are obtained from the equilibrium equations at the interface between the adjacent layers. Deformation of an edge-delaminated laminate is analysed by using a generalized quasi-three dimensional classical laminated plate theory. The analysis provides closed-form expression for the three components of the strain energy release rate. The analyses are performed for composite laminates subjected to uniaxial tension, with free-edge delaminations located symmetrically and asymmetrically with respect to the laminate midplane. The analysis results agreed with a finite element solution using the virtual crack closure technique.

  • PDF

Behavior of Tunnel Face Reinforced with Horzontal Pipes (수평보강재로 보강된 터널 막장의 거동)

  • 유충식;신현강
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.2 no.1
    • /
    • pp.130-138
    • /
    • 2000
  • 본 연구에서는 수평보강재로 보강된 터널 막장의 거동에 관한 매개변수 연구결과를 다루었다. 매개변수 연구에서는 막장주변의 3차원 응력-변형율 거동을 보다 효율적으로 모델링하기 위해 3차원 유한요소해석 모형을 적용하였으며 보강패턴에 따른 막장의 거동을 고찰하기 위해 다양한 경계조건에 대한 해석을 수행하였다. 해석결과를 토대로 막장의 응력해방-변위거동의 관계를 고찰하였으며, 보강패턴과 막장 변위의 정성${\cdot}$정량적인 관계를 제시함과 아울러서 향후 수행될 반경험적 설계/해석법의 개발을 위한 데이터베이스를 구축하였다. 한편, 해석결과 보강재 타설수 및 길이 등 각 보강설계 인자에 대한 임계치가 존재하는 것으로 나타났으며 따라서 보다 안전하고 경제적인 설계를 위해서는 이를 고려하여야 할 것으로 판단된다.

  • PDF