저온 열균열 현상을 이용한 초기 응력 측정법 - 개념, 이론 및 수치해석

A Novel Method for In Situ Stress Measurement by Cryogenic Thermal Cracking - Concept Theory and Numerical Simulation

  • 류창하 (한국지질자원연구원 지구환경연구본부) ;
  • 류동우 (한국지질자원연구원 지구환경연구본부) ;
  • 최병희 (한국지질자원연구원 지구환경연구본부) ;
  • 신중호 (한국지질자원연구원 지구환경연구본부) ;
  • 발행 : 2008.10.31

초록

시추공을 이용한 초기응력 측정을 위한 새로운 방법을 제안하였다. 이 새로운 개념의 측정법은 기본적으로 응력 해방과 파쇄 기술을 결합한 방법이다. 액화질소와 같은 극저온 액체를 이용하여 시추공 주변의 인장 열응력을 유도하여 시추공 주변의 응력을 해방시킬 수 있다. 종국에는 시추공 주변의 인장 강도가 암반의 인장 강도에 초기 지압으로 존재하는 압축 응력의 합을 초과할 때 시추공벽에 균열을 발생시킨다. 이와 같은 개념을 인장 응력으로부터 초기 응력 수준을 평가하는데 적용하기 위한 이론적 분석을 수행하였다. 또한, 제안한 방법의 유효성을 검토하기 위해 FLAC3D를 이용한 열-역학 상호작용 연속체 해석을 수행하였다. 사전 이론적 검토 및 수치해석으로부터 저온 열균열 발생 현상을 이용한 초기 응력 측정법이 시추공벽에서의 인장 균열 형성을 감시하고 시추공벽에서의 균열 개시 시점의 온도를 기록함으로써 초기 응력을 정밀하게 측정할 수 있음을 확인하였다.

A new method is suggested herein to measure the virgin earth stresses by means of a borehole. This novel concept is basically a combination of borehole stress relieving and borehole fracturing techniques. The destressing of the borehole is achieved by means of inducing thermal tensile stresses at the borehole periphery by using a cryogenic fluid such as Liquid Nitrogen($LN_2$). The borehole wall eventually develops fractures when the induced thermal stresses exceed the existing compressive stresses at the borehole periphery in addition to the tensile strength of the rock. The above concept is theoretically analyzed for its potential applicability to interpret in situ stress levels from the tensile fracture stresses and the corresponding borehole wall temperatures. Coupled thermo-mechanical numerical simulations are also conducted using FLAC3D, with thermal option, to check the validity of the proposed techniques. From the preliminary theoretical and numerical analysis, the method suggested for the measurement of in situ stresses appears to be capable of accurate estimation of the virgin stresses by monitoring tensile crack formation at a borehole wall and recording the wall temperatures at the time of crack initiation.

키워드

참고문헌

  1. Amadei, B. and Stephansson, O. (1997) Rock stress and its measurement, 1st Ed., Chapman and Hall, London
  2. Bock, H. and Foruria, V. (1983) A recoverable borehole slotting instrument for in situ stress measurements in rock, Proc. Int. Symp. On Field measurements in Geomechanics, Zurich, Balkema, Rotterdam, 15-29
  3. Brown, E. T. and Hoek, E. (1978) Trends in relationships between measured in situ stresses and depth, Int. J. Rock Mech. Min. Sci. & Geomech. Abst., 15, 211-215 https://doi.org/10.1016/0148-9062(78)91227-5
  4. Bruno, A. B. and Jerome, H. W. (1985) Theory of thermal stresses, Dover Publications, Minneola, New York
  5. Fairhurst, C. (1964) Measurement of in situ rock stresses with particular references to hydraulic fracturing, Rock Mech. Eng. Geol., 2, 129-147
  6. FLAC3D manual ver 2.0, ITASCA
  7. Ito T., Sato A. and Hayashi K. (2001) Laboratory and field verification of a new approach to stress measurements using a dilatometer tool, Int. J. Rock Mech. Min. Sci., 38, 1173-1184 https://doi.org/10.1016/S1365-1609(01)00073-9
  8. Jaeger, J. C. and Cook, N. G. W. (1976) Fundamentals of rock mechanics, 2nd Ed., Chapman and Hall, London
  9. Kaiser, J. (1950) An investigation into the occurrence of noises in tensile tests or a study of acoustic phenomena in tensile tests, Unpublished Doctoral Thesis, Tech.Hosch, Munich
  10. Leeman, E. R. (1964) The measurement of stress in rock - Part I, J. S. Afr. Inst. Min. Metall., 65, 45-114
  11. Leeman, E. R. and Hayes, D. J. (1966) A technique for determining the complete state of stress in rock using a single borehole, Proc. 1st Cong. Int. Soc. Rock Mech. (ISRM), Lisbon, 2, 17-24
  12. Mayer, A., Habib, P. and Marchand, R. (1951) Underground rock pressure testing, Proc. Int. Conf. Rock Pressure and Support in the workings, Liege, 217-221
  13. Merrill, R. H. (1967) Three component borehole deformation gage for determining the stress in rock, U.S. Bureau of Mines Report of Investigation RI 7015
  14. Stephansson, O. (1983) Rock stress measurement by sleeve fracturing, Proc. 5thCong. Int. Soc. Rock Mech. (ISRM), Melbourne. Balkema, Rotterdam, F129-137
  15. Saharan, M. R. (2004) Dynamic modelling of rock fracturing by destress blasting, Ph.D. Thesis, University of McGill, Canada
  16. Zoback, M. D. (1985) Well bore breakouts and in situ stress, J. Geophys. Res., 90, 5523-30 https://doi.org/10.1029/JB090iB07p05523