• Title/Summary/Keyword: 음원

Search Result 1,234, Processing Time 0.041 seconds

Object Position Tracking Algorithm of Intelligent Robot using Sound Source and Absolute Orientation (음원과 절대 방위를 이용한 지능형 로봇의 목표물 위치 추적 알고리즘)

  • Park, Gyeong-Jin;Yang, Guk-Bo;Lee, Hae-Kang;Jang, In-Hun;Sim, Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.53-56
    • /
    • 2006
  • 최근 가정용 로봇 연구가 활발히 진행됨에 따라, 가정과 같은 다이내믹한 환경에서 로봇이 목소리를 포함한 음원에 반응하고 그 위치를 정확히 찾아가는 것이 매우 중요해지고 있다. 인간이 목표물에 도달하기 위해 경로를 선택할 때, 그 목표물이 소리인 경우는 현재 위치에서 음원의 방향을 추적한다. 또한 그 목표물의 위치가 지도로 주워질 경우에는 현재 위치와 목표불의 절대적 방위를 기준으로 추적한다. 본 논문에서는 이처럼 사람이 다른 사람의 목소리를 듣고 반응하거나 어떤 방향으로 가고자할 때 소리가 나는 방향이나 지도를 통해 대략 자신만의 방위를 만드는 것에 착안하여, 지능형 모바일 로봇에 음원추적 장치와 전자나침반을 장착함으로써 음원의 방향 또는 절대 방위를 기준으로 목표물을 찾아가는 알고리즘을 제시하고자 한다.

  • PDF

LANGUAGE LEARNING SOURCE ANALYSIS METHOD AND ELECTRONIC DEVICE FOR PLAYING LANGUAGE LEARNING SOURCE RESEARCH (언어 학습 음원 분석 방법 및 언어 학습 음원을 재생하는 전자 디바이스 연구)

  • Song, Gyu-Bin;Oh, Jeong-Hyeon;Hwang, Chae-won;Yu, Dong-Wan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.355-357
    • /
    • 2020
  • 언어 학습 음원 분석 방법 및 언어 학습 음원을 재생하는 전자 디바이스 연구로, 음원을 문장 단위로 분할하여 스크립트화하는 것을 주요 목표로 한다. 분석과정은 크게 세단계로 나눌 수 있다. 무음 구간 분석, 음원 분할 및 STT 구간, 스크립트 재구성이다. 이런 분석 과정을 통해 나온 결과물의 정확도는 90%로서 본 연구의 목표를 달성한다.

A Study on Color Code Control Connected with Sound Source and Sensitivity of PA Speaker facility attachable LED Patch (PA스피커 시설물 부착형 LED패치의 음원감성 연계형 컬러코드 제어에 관한 연구)

  • Kim, Youngmin;Shin, Jaekwon;Cha, Jaesang
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.22-25
    • /
    • 2015
  • This paper performs Color Code Control Connected with Sound Source and Sensitivity of PA Speaker facility attachable LED patch. PA speaker delivers the technology to control the color code of LED patch along the present PA speakers for the facility-attached, LED the development of the patch. PA speakers facility attachable color code control technology of LED patch detects the sound from the PA speaker using a check, and if the analog signal source is detected (sound source)by converting the digital signal passes to the main controller can control the color and pattern of LED patches. In this paper, based on the PA speakers LED color control system, sound emotional linkage-type, and follow the lead of the PA speakers through the feelings can effectively channel LED linked to the source type and proceed to experiment with color and emotion control, whether or not they offer via the color control technology LED patch availability. PA speaker facility attachble color code control technology of LED patch connected with the source and future research directions in the field, and as the application is expected to be able to be widely utilized.

A Study on Arrangement and Configuration of Acoustic Output Equipment according to Type of Church Broadcast Sources (교회 방송음원의 종류에 따른 음향출력 설비 구성 배치에 관한 연구)

  • Park, Eunjin;Lee, Seonhee
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.80-85
    • /
    • 2016
  • In this paper, by comparatively analyzing horn type speaker and line array type speaker developed based on line sound source theory and point sound source theory, we research whether theory is adaptable or not in real. Academically, point sound source is attenuated as much as 6dB in accordance with double distance and line sound source is attenuated as much as 3dB in accordance with double distance. Line array speaker system developed based on line sound source is analyzed by theory of line sound source about occurring small sound pressure attenuation and it is propose of research that array composition of right speaker is selected in accordance with use purpose and environment. For this purpose, we analyze theory of point sound source and line sound source. we analyze parameter value by simulating designed horn type speaker and line array speaker based on theory.

A Review of the Possible Causes of Negative Source Impedance in Fluid Machines (유체기계에 있어서 부의 음원 임피던스의 원인에 관한 고찰)

  • ;Keith S. Peat
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.76-82
    • /
    • 2001
  • Most fluid machines can be considered as periodic noise sources when operated under constant conditions, which allows for a frequency domain representation of the source and the associated acoustic field In the duct. In such a representation, the source is characterized by frequency-dependent values of both strength and impedance. Although knowledge of these values can be gained by either experimentation or by modeling, one-port acoustic characteristics of an in-duct source with high flow velocity, high temperature, and high sound level can be measured only by the multiload method using an overdetermined set of open pipes with different lengths as applied loads. However, the problem is that negative source resistances have been often measured. This paper reviews the possible causes of the problem, with reference to experimental and theoretical results, in an attempt to clarify the issue. A new interpretation is given for the violation of basic assumptions and the defect in the algorithm of multiload method. The major cause and mechanism of the problem is due to the violation of time invariance assumption of the source and the load impedance can seriously affect the final measured result of source impedance.

  • PDF

Robust variable range focusing with a virtual source array using the waveguide invariant in underwater (수중에서의 도파관 불변성을 이용한 가상 음원 배열 기반의 다양한 거리 방향으로의 강인한 집속)

  • Byun, Gi Hoon;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.23-29
    • /
    • 2017
  • A concept of a VSA (Virtual Source Array) is the method for an acoustic spatio-temporal focus at a selected location in the outbound direction with respect to the VSA without the need of a probe source as combines a TRP (Time-Reversal Processing) and time-delay and beam-steering. However, in TRP using the VSA concept, it is limited to the critical angle and the short distances relevant to the VSA. In this paper, the waveguide invariant theory is applied to the VSA concept to refocus the received field at ranges greater other than the critical angle and the short ranges by shifting the focused field. The suggested method is verified via numerical simulation, and the results show that the robust acoustic focusing is achieved on the selected location regardless of the limitation on the conventional VSA concept.

The Design of IoT Device System for Disaster Prevention using Sound Source Detection and Location Estimation Algorithm (음원탐지 및 위치 추정 알고리즘을 이용한 방재용 IoT 디바이스 시스템 설계)

  • Ghil, Min-Sik;Kwak, Dong-Kurl
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.53-59
    • /
    • 2020
  • This paper relates to an IoT device system that detects sound source and estimates the sound source location. More specifically, it is a system using a sound source direction detection device that can accurately detect the direction of a sound source by analyzing the difference of arrival time of a sound source signal collected from microphone sensors, and track the generation direction of a sound source using an IoT sensor. As a result of a performance test by generating a sound source, it was confirmed that it operates very accurately within 140dB of the acoustic detection area, within 1 second of response time, and within 1° of directional angle resolution. In the future, based on this design plan, we plan to commercialize it by improving the reliability by reflecting the artificial intelligence algorithm through big data analysis.

A study on sound source segregation of frequency domain binaural model with reflection (반사음이 존재하는 양귀 모델의 음원분리에 관한 연구)

  • Lee, Chai-Bong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.3
    • /
    • pp.91-96
    • /
    • 2014
  • For Sound source direction and separation method, Frequency Domain Binaural Model(FDBM) shows low computational cost and high performance for sound source separation. This method performs sound source orientation and separation by obtaining the Interaural Phase Difference(IPD) and Interaural Level Difference(ILD) in frequency domain. But the problem of reflection occurs in practical environment. To reduce this reflection, a method to simulate the sound localization of a direct sound, to detect the initial arriving sound, to check the direction of the sound, and to separate the sound is presented. Simulation results show that the direction is estimated to lie close within 10% from the sound source and, in the presence of the reflection, the level of the separation of the sound source is improved by higher Coherence and PESQ(Perceptual Evaluation of Speech Quality) and by lower directional damping than those of the existing FDBM. In case of no reflection, the degree of separation was low.

Closed-form Localization of a coherently distributed single source with circular array (환형배열에서 닫힌 형식을 이용한 코히어런트 분산 단일음원의 위치 추정 기법)

  • Jung, Tae-Jin;Shin, Kee-Cheol;Park, Gyu-Tae;Cho, Sung-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.437-442
    • /
    • 2018
  • In this paper, we propose a method for estimating the position of a source in a closed form when a single source has coherently distributed property against a circular array. When a sound source reaches a sensor through multipath environments, it is seen as a distributed source and can be represented by four variables: the nominal azimuth, nominal elevation, azimuth angular spread, elevation angular spread. Therefore, it requires a lot of computation by a search method such as DSPE (Distributed Source Parameter Estimator). In this paper, we propose a method of estimating the nominal azimuth and elevation angle in a closed form using correlation function and least squares method for fast position estimation. In particular, if the source is assumed as Gaussian distribution model, the standard deviation is also estimated in a closed form. In the simulation, the validity of the proposed method is confirmed by comparing with the DSPE.