• Title/Summary/Keyword: 음성감정인식

Search Result 142, Processing Time 0.023 seconds

The Study on the Quality Assessment Model of Aircraft Voice Recognition Software (항공기 음성인식 소프트웨어 품질 평가 모델 연구)

  • Lee, Seung-Mok
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.2
    • /
    • pp.73-83
    • /
    • 2019
  • Voice Recognition has recently been improved with AI(Artificial Intelligence) and has greatly improved the false recognition rate and provides an effective and efficient Human Machine Interface (HMI). This trend has also been applied in the defense industry, particularly in the aviation, F-35. However, for the quality evaluation of Voice Recognition, the defense industry, especially the aircraft, requires measurable quantitative models. In this paper, the quantitative evaluation model is proposed for applying Voice Recognition to aircraft. For the proposal, the evaluation items are identified from the Voice Recognition technology and ISO/IEC 25000(SQuaRE) quality attributes. Using these two perspectives, the quantitative evaluation model is proposed under aircraft operation condition and confirms the evaluation results.

Development and validation of a Korean Affective Voice Database (한국형 감정 음성 데이터베이스 구축을 위한 타당도 연구)

  • Kim, Yeji;Song, Hyesun;Jeon, Yesol;Oh, Yoorim;Lee, Youngmee
    • Phonetics and Speech Sciences
    • /
    • v.14 no.3
    • /
    • pp.77-86
    • /
    • 2022
  • In this study, we reported the validation results of the Korean Affective Voice Database (KAV DB), an affective voice database available for scientific and clinical use, comprising a total of 113 validated affective voice stimuli. The KAV DB includes audio-recordings of two actors (one male and one female), each uttering 10 semantically neutral sentences with the intention to convey six different affective states (happiness, anger, fear, sadness, surprise, and neutral). The database was organized into three separate voice stimulus sets in order to validate the KAV DB. Participants rated the stimuli on six rating scales corresponding to the six targeted affective states by using a 100 horizontal visual analog scale. The KAV DB showed high internal consistency for voice stimuli (Cronbach's α=.847). The database had high sensitivity (mean=82.8%) and specificity (mean=83.8%). The KAV DB is expected to be useful for both academic research and clinical purposes in the field of communication disorders. The KAV DB is available for download at https://kav-db.notion.site/KAV-DB-75 39a36abe2e414ebf4a50d80436b41a.

Digit Recognition Rate Comparision in DHMM and Neural Network (DHMM과 신경망에서 숫자음 인식률 비교)

  • 박정환;이원일;황태문;이종혁
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.171-174
    • /
    • 2002
  • 음성 신호는 언어정보, 개인성, 감정 등의 여러 가지 정보를 포함한 음향학적인 신호인 동시에 가장 자연스럽고 널리 쓰이는 의사소통 수단의 하나이다. 본 연구에서는 저장된 음성 신호에서 추출한 특징 파라미터를 사용한 경우와 음성 특징파라미터에 입술 패턴에 대한 영상정보를 통시에 사용한 경우 DHMM과 신경망을 통하여 각각 인식률을 비교해 보았다. 그 결과 입술패턴에 대할 영상정보도 음성인식에 사용 할 수 있음을 알 수 있었다.

  • PDF

HEEAS: On the Implementation and an Animation Algorithm of an Emotional Expression (HEEAS: 감정표현 애니메이션 알고리즘과 구현에 관한 연구)

  • Kim Sang-Kil;Min Yong-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.3
    • /
    • pp.125-134
    • /
    • 2006
  • The purpose of this paper is constructed a HEEAAS(Human Emotional Expression Animaion System), which is an animation system to show both the face and the body motion from the inputted voice about just 4 types of emotions such as fear, dislike, surprise and normal. To implement our paper, we chose the korean young man in his twenties who was to show appropriate emotions the most correctly. Also, we have focused on reducing the processing time about making the real animation in making both face and body codes of emotions from the inputted voice signal. That is, we can reduce the search time to use the binary search technique from the face and body motion databases, Throughout the experiment, we have a 99.9% accuracy of the real emotional expression in the cartoon animation.

  • PDF

Feature Comparison of Emotion Recognition Models using Face Images (얼굴사진 기반 감정인식 모델의 특성 분석)

  • Kim, MinGeyung;Yang, Jiyoon;Choi, Yoo-Joo
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.615-617
    • /
    • 2022
  • 본 논문에서는 얼굴사진 기반 감정인식 심층망, 음성사운드를 기반한 감정인식 심층망을 결합한 앙상블 네트워크 구축을 위한 사전연구로서 얼굴사진 기반 감정을 인식하는 기존 딥뉴럴 네트워크 모델들을 입력 데이터 처리 방법에 따라 분류하고, 각 방법의 특성을 분석한다. 또한, 얼굴사진 외관 특성을 기반한 감정인식 네트워크를 여러 구조로 구성하고, 구성된 방법의 성능을 비교하여, 우수 성능을 보이는 네트워크를 선정하여 추후 앙상블 네트워크의 구성 네트워크로 사용하고자 한다.

The effect of media modality and the valence of risk messages on affective risk perception and behavioral intention (미디어 형식과 위험 메시지 구성이 감정적 위험인식과 행위의도에 미치는 영향)

  • Lee, Jae-Shin
    • Korean Journal of Cognitive Science
    • /
    • v.23 no.4
    • /
    • pp.457-485
    • /
    • 2012
  • The current study explores how media modality and message frame interact to form individuals' affective risk perception and behavioral intention. Specifically, participants were exposed to positive and negative messages on irradiated foods in text, audio, and audio/video formats and their affective risk perception and purchase intention were measured. Results indicate that individuals' affective risk perception and purchase intention were influenced by media modality and message frame. The significant interaction effects between the two variables were also observed. The results indicate that the appropriate media modality should be carefully selected based on the message content for effective risk communication.

  • PDF

Multifaceted Evaluation Methodology for AI Interview Candidates - Integration of Facial Recognition, Voice Analysis, and Natural Language Processing (AI면접 대상자에 대한 다면적 평가방법론 -얼굴인식, 음성분석, 자연어처리 영역의 융합)

  • Hyunwook Ji;Sangjin Lee;Seongmin Mun;Jaeyeol Lee;Dongeun Lee;kyusang Lim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.55-58
    • /
    • 2024
  • 최근 각 기업의 AI 면접시스템 도입이 증가하고 있으며, AI 면접에 대한 실효성 논란 또한 많은 상황이다. 본 논문에서는 AI 면접 과정에서 지원자를 평가하는 방식을 시각, 음성, 자연어처리 3영역에서 구현함으로써, 면접 지원자를 다방면으로 분석 방법론의 적절성에 대해 평가하고자 한다. 첫째, 시각적 측면에서, 면접 지원자의 감정을 인식하기 위해, 합성곱 신경망(CNN) 기법을 활용해, 지원자 얼굴에서 6가지 감정을 인식했으며, 지원자가 카메라를 응시하고 있는지를 시계열로 도출하였다. 이를 통해 지원자가 면접에 임하는 태도와 특히 얼굴에서 드러나는 감정을 분석하는 데 주력했다. 둘째, 시각적 효과만으로 면접자의 태도를 파악하는 데 한계가 있기 때문에, 지원자 음성을 주파수로 환산해 특성을 추출하고, Bidirectional LSTM을 활용해 훈련해 지원자 음성에 따른 6가지 감정을 추출했다. 셋째, 지원자의 발언 내용과 관련해 맥락적 의미를 파악해 지원자의 상태를 파악하기 위해, 음성을 STT(Speech-to-Text) 기법을 이용하여 텍스트로 변환하고, 사용 단어의 빈도를 분석하여 지원자의 언어 습관을 파악했다. 이와 함께, 지원자의 발언 내용에 대한 감정 분석을 위해 KoBERT 모델을 적용했으며, 지원자의 성격, 태도, 직무에 대한 이해도를 파악하기 위해 객관적인 평가지표를 제작하여 적용했다. 논문의 분석 결과 AI 면접의 다면적 평가시스템의 적절성과 관련해, 시각화 부분에서는 상당 부분 정확도가 객관적으로 입증되었다고 판단된다. 음성에서 감정분석 분야는 면접자가 제한된 시간에 모든 유형의 감정을 드러내지 않고, 또 유사한 톤의 말이 진행되다 보니 특정 감정을 나타내는 주파수가 다소 집중되는 현상이 나타났다. 마지막으로 자연어처리 영역은 면접자의 발언에서 나오는 말투, 특정 단어의 빈도수를 넘어, 전체적인 맥락과 느낌을 이해할 수 있는 자연어처리 분석모델의 필요성이 더욱 커졌음을 판단했다.

  • PDF

Analysis of Voice Quality Features and Their Contribution to Emotion Recognition (음성감정인식에서 음색 특성 및 영향 분석)

  • Lee, Jung-In;Choi, Jeung-Yoon;Kang, Hong-Goo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.5
    • /
    • pp.771-774
    • /
    • 2013
  • This study investigates the relationship between voice quality measurements and emotional states, in addition to conventional prosodic and cepstral features. Open quotient, harmonics-to-noise ratio, spectral tilt, spectral sharpness, and band energy were analyzed as voice quality features, and prosodic features related to fundamental frequency and energy are also examined. ANOVA tests and Sequential Forward Selection are used to evaluate significance and verify performance. Classification experiments show that using the proposed features increases overall accuracy, and in particular, errors between happy and angry decrease. Results also show that adding voice quality features to conventional cepstral features leads to increase in performance.

Senior Life Logging and Analysis by Using Deep Learning and Captured Multimedia Data (딥 러닝 기반의 API 와 멀티미디어 요소를 활용한 시니어 라이프 데이터 수집 및 상태 분석)

  • Kim, Seon Dae;Park, Eun Soo;Jeong, Jong Beom;Koo, Jaseong;Ryu, Eun-Seok
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.244-247
    • /
    • 2018
  • 본 논문에서는 시니어를 위한 라이프 데이터 수집 및 행동분석 프레임 워크를 설명하고, 이의 부분적 구현을 자세히 설명한다. 본 연구는 시니어를 위한 라이프 데이터를 바탕으로 보호자가 없는 시니어를 보살핌과 동시에, 보호자가 미처 인지하지 못하는 시니어의 비정상적인 상태를 분석하여 판단하는 시스템을 연구한다. 먼저, 시니어가 시간을 많이 소요하는 TV 앞 상황을 가정하고, 방영되는 TV 콘텐츠와 TV 카메라를 이용한 시니어의 영상/음성 정보로 이상상태와 감정상태, TV 콘텐츠에 대한 반응과 반응속도를 체크한다. 구체적으로는 딥 러닝 기반의 API 와 멀티미디어 데이터 분석에서 사용되는 오픈 패키지를 바탕으로, 영상/음성의 키 프레임을 추출하여 감정 및 분위기를 분석하고 시니어의 얼굴 표정 인식, 행동 인식, 음성 인식을 수행한다.

  • PDF

An Analysis of Formants Extracted from Emotional Speech and Acoustical Implications for the Emotion Recognition System and Speech Recognition System (독일어 감정음성에서 추출한 포먼트의 분석 및 감정인식 시스템과 음성인식 시스템에 대한 음향적 의미)

  • Yi, So-Pae
    • Phonetics and Speech Sciences
    • /
    • v.3 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Formant structure of speech associated with five different emotions (anger, fear, happiness, neutral, sadness) was analysed. Acoustic separability of vowels (or emotions) associated with a specific emotion (or vowel) was estimated using F-ratio. According to the results, neutral showed the highest separability of vowels followed by anger, happiness, fear, and sadness in descending order. Vowel /A/ showed the highest separability of emotions followed by /U/, /O/, /I/ and /E/ in descending order. The acoustic results were interpreted and explained in the context of previous articulatory and perceptual studies. Suggestions for the performance improvement of an automatic emotion recognition system and automatic speech recognition system were made.

  • PDF