• Title/Summary/Keyword: 은 나노섬유

Search Result 42, Processing Time 0.024 seconds

Fabrication of Poly(Vinylidene Fluoride) Nanocomposite Fibers Containing Zinc Oxide Nanoparticles and Silver Nanowires and their Application in Textile Sensors for Motion Detection and Monitoring (산화아연(Zinc oxide) 나노입자와 은나노 와이어(Silver nanowire)를 함유한 Poly(vinylidene fluoride) 복합나노섬유 제조 및 동작 센서로의 적용 가능성 탐색)

  • Hyukjoo Yang;Seungsin Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.3
    • /
    • pp.577-592
    • /
    • 2023
  • In this study, nanofiber-based textile sensors were developed for motion detection and monitoring. Poly(vinylidene fluoride) (PVDF) nanofibers containing zinc oxide (ZnO) nanoparticles and silver nanowires (AgNW) were fabricated using electrospinning. PVDF was chosen as a piezoelectric polymer, zinc oxide as a piezoelectric ceramic, and AgNW as a metal to improve electric conductivity. The PVDF/ZnO/AgNW nanocomposite fibers were used to develop a textile sensor, which was then incorporated into an elbow band to develop a wearable smart band. Changes in the output voltage and peak-to-peak voltage (Vp-p) generated by the joint's flexion and extension were investigated using a dummy elbow. The β-phase crystallinity of pure PVDF nanofibers was 58% when analyzed using Fourier transform infrared spectroscopy; however, the β-phase crystallinity increased to 70% in PVDF nanofibers containing ZnO and to 78% in PVDF nanocomposite fibers containing both ZnO and AgNW. The textile sensor's output voltage values varied with joint-bending angle; upon increasing the joint angle from 45° to 90° to 150°, the Vp-p value increased from 0.321 Vp-p to 0.542 Vp-p to 0.660 Vp-p respectively. This suggests that the textile sensor can be used to detect and monitor body movements.

Preparation of Multifuctional Wool Fibers with Nano-Silver Colloid (나노 은 콜로이드를 이용한 다기능성 양모섬유의 제조)

  • Ki, Hee-Yeon;Yeo, Sang-Young;Jeong, Sung-Hoon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.239-240
    • /
    • 2003
  • Recently, the works about antibacterial finishing have been actively investigated in textile industry because of increasing environmental pollution. Wool can easily be an medium for microorganisms growth under proper temperature and humid condition. These microorganisms can result in damages, skin irritations, and infections in wool products. For this reason, the wool materials must be protected against microorganisms in order to suppress their growth and dissemination as well as fiber damage. (omitted)

  • PDF

Reactive anion agent for Durable Nanosilver finish of Cellulose fiber (반응형 음이온화제를 이용한 Cellulose 섬유의 내구성 은나노 가공)

  • Min, Mun-Hong;Bin, So-Yeong;Min, Eun-Seon;Lee, Mu-Sang
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.10a
    • /
    • pp.119-120
    • /
    • 2008
  • The study has attempted to boost a coherence of cellulose fiber and nanosilver particle with reactive anion agent. The object of this study is finding condition for treatment of reactive anion agent and effects of nanosilver particle according to manufacturing process.

  • PDF

Effect of GAC Packing Mass in Hybrid Water Treatment Process of PVdF Nanofibers Spiral Wound Microfiltration and Granular Activated Carbon (PVdF 나노섬유 나권형 정밀여과와 입상 활성탄의 혼성 수처리에서 활성탄 충진량의 영향)

  • Kyung, Kyu Myung;Park, Jin Yong
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.68-76
    • /
    • 2017
  • Flat membrane with $0.4{\mu}m$ pore size was prepared with PVdF (polyvinylidene fluoride) nanofiber, which has the advantages such as excellent strength, chemical resistance, non-toxicity, and incombustibility. The spiral wound module was manufactured with the flat membrane and a woven paper. Hybrid water treatment process was composed of the PVdF nanofibers spiral wound microfiltration and granular activated carbon (GAC) adsorption column. Effect of GAC packing mass was investigated by comparing the case of recycling or discharging the treated water using the synthetic solution of kaolin and humic acid. After each filtration experiment, water back-washing was performed, and recovery rate and filtration resistances were calculated. Also, effect of GAC adsorption was compared by measuring turbidity and $UV_{254}$ absorbance. As a result, there was no effect of GAC packing mass on turbidity treatment rate; however, the treatment rate of $UV_{254}$ absorbance was 0.7~3.6% for recycling the treated water, and increased to 3.2-5.7% for discharging the treated water. In the case of recycling the treated water, reversible filtration resistance ($R_r$) and irreversible filtration resistance ($R_{ir}$) trended to decrease as increasing GAC packing mass; however, total fitration resistance ($R_t$) was almost constant, and recovery rate of water back-washing trended to increase a little.

Improved Electrical Conductivity of CFRP by Conductive Nano-Particles Coating for lightning Strike Protection (낙뢰손상방지를 위한 전도성 나노입자 코팅에 의한 탄소섬유 복합재료의 전기전도도 향상 연구)

  • Ha, Min-Seok;Kwon, Oh-Yang;Choi, Heung-Soap
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • The improvement of electrical conductivity of carbon-fiber reinforced plastics (CFRP) has been investigated by silver nano-particles coating for the purpose of lightning strike protection. Silver nano-particles in colloid were sprayed on the surface of carbon fibers, which were then impregnated by epoxy resin to form a CFRP specimen. Electrical resistance was measured by contact resistance meter which utilize the principles of the AC 4-terminal method. Electrical resistance value was then converted to electrical conductivity. The coated silver nano-particles on the carbon fibers were verified by SEM and EDS. The electrical conductivity was increased by three times of the ordinary CFRP.

Removal of Heavy Metal Ions from Wastewater by Polyacrylonitrile based Fibers: A Review (폴리아크릴로나이트릴 섬유를 기반으로 한 폐수에서의 중금속 이온 제거: 총설)

  • Oh, Hyunyoung;Lee, Jae Hun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.123-129
    • /
    • 2019
  • Environmental pollution caused by the presence of heavy metal ion from growing industrialization or from leaching is increasing area of concern. There are several area of water purifications but among them adsorption on the functionalized polymer fibers is efficient and cost-effective method. Polyacrylonitrile (PAN) is exciting polymer due to the presence of excessive functional group which can be easily transformed for metal ion adsorption. PAN can be easily electrospun to prepare nanofiber that have higher surface area leading to better metal ion removal. Composite PAN fiber is yet another type of polymer covered in this review for waste water treatment.

Study on the Diameter-Controlled Synthesis of Silver Nanofibers and Their Application to Transparent Conductive Electrodes (은 나노섬유의 직경제어 합성 및 투명전극 응용 연구)

  • Lee, Young-In
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.537-542
    • /
    • 2015
  • One-dimensional (1D) silver nanostructures, which possess the highest conductivity among all room-temperature materials, moderate flexibility and high transmittance, are one of the most promising candidate materials to replace conventional indium tin oxide transparent electrodes. However, the short length and large diameter of 1D silver nanostructures cause a substantial decrease in the optical transparency or an increase in the sheet resistance. In this work, ultra-long silver nanofiber networks were synthesized with a low-cost and scalable electrospinning process, and the diameter of the nanofibers were finetuned to achieve a higher aspect ratio. The decrease in the diameter of the nanofibers resulted in a higher optical transparency at a lower sheet resistance: 87 % at $300{\Omega}/sq$, respectively. It is expected that an electrospun silver nanofiber based transparent electrode can be used as a key component in various optoelectronic applications.

The Spinnability of Ag/PET Master Batch containing Silver Nano Particles according to Changing of Intrinsic Viscosity (은나노입자 함유 M/B의 고유점도(IV)변화에 따른 제사성 및 가연성에 관한 연구)

  • Son, Eun-Jong;Kim, Hyun-Sun;Choi, Tae-Soo;Jeong, Sung-Hoon
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.54-54
    • /
    • 2011
  • 방사 공정 최적화를 위해 칩(chip)건조를 실시하여 칩의 수분을 모두 제거한 후 실험을 진행하게 된다. 칩은 그 자체가 공정수분율(0.4%) 또는 그 이상의 수분을 함유하고 있으므로 건조하지 않고 방사하면 현저히 가수분해가 일어난다. 가수분해가 일어난다면 PET 분자량도 저하되어 고분자의 성질을 잃게 되어 방사된 섬유의 물리 화학적 성질에 중요한 영향을 받게 된다. 그러므로 가수분해를 방지하기 위하여 칩내 수분을 제거하는 건조 공정을 거치는 것이다. 개발된 나노은입자을 함유한 Ag/PET 마스터배치의 제사성 및 가연성 평가을 위한 파일럿연구를 행했다. 본 연구에서 사용한 은나노 M/B 칩(chip)의 경우 일반적으로 사용하는 PET 칩에 비하여 낮은 고유점도를 가지므로 방사성에 칩의 수분이 더욱 영향을 미칠 것이라 판단되어 건조공정에 특별한 주의을 하여 진행하였다. 마스터배치의 고유점도(IV)값의 변화에 따른 제사성 및 가연성 평가를 관찰하였다. #3 M/B 칩의 제사성이 #1 M/B 칩 대비 공정성이 개선되어 두 품종 모두 비출사가 발생하지 않았으며, M/B 제조시 분산제 유무에 따른 방사공정성의 차이는 없는 것으로 보인다. 따라서 #1 M/B 대비 공정성이 개선된 점은 M/B의 IV개선에 기인하는 것으로 판단되었다.

  • PDF

A study on antibacterial Property of padded PE/PP nonwovens with nano-silver colloidal solution (나노 사이즈의 은 콜로이드를 이용한 PE/PP 부직포의 항균성에 관한 연구)

  • Hwang, Yun-Hwan;Jeong, Sung-Hoon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.241-242
    • /
    • 2003
  • Silver has antibacterial property on bacteria of about 650 kinds and has been well known as non-toxic and non-tolerance in natural state. Recently, silver has been applied disinfection and antibacterial property to everyday life as health foods, filter, and exclusion of pollution. Nano-sized silver particle have very small size (〈10nm) and wide surface area per unit volume. PE/PP nonwovens used as back sheet or coverstock of baby diaper, adult diaper, sanitary napkin, and wiper. (omitted)

  • PDF

Interfacial Evaluation of Single-Carbon Fiber/Phenolic and Carbon Nanotube-Phenolic Composites Using Micromechanical Tests and Electrical Resistance Measurements (미세역학시험법과 전기저항 측정을 이용한 탄소섬유/페놀수지 및 탄소나노튜브-페놀수지 복합재료의 계면특성 평가)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Jong-Kyoo;Lee, Woo-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.149-154
    • /
    • 2010
  • Interfacial evaluation was investigated for single-carbon fiber/phenolic and carbon nanotube (CNT)-phenolic composites by micromechanical technique and electrical resistance measurement combined with wettability test. Compressive strength of pure phenol and CNT-phenolic composites were compared using Broutman specimen. The contact resistance of CNT-phenolic composites was obtained using a gradient specimen by two and four-point methods. Surface energies and wettability by dynamic contact angle measurement were measured using Wilhelmy plate technique. Since hydrophobic domains are formed as heterogeneous microstructure of CNT in the surface, the dynamic contact angle exhibited more than $90^{\circ}$. CNT-phenolic composites exhibited a higher apparent modulus than neat phenolic case due to better stress transferring effect. Work of adhesion, $W_a$ between single-carbon fiber and CNT-phenolic composites exhibited higher than neat phenolic resin due to the enhanced viscosity by CNT addition. It was consistent with micro-failure patterns in microdroplet test.