DOI QR코드

DOI QR Code

Study on the Diameter-Controlled Synthesis of Silver Nanofibers and Their Application to Transparent Conductive Electrodes

은 나노섬유의 직경제어 합성 및 투명전극 응용 연구

  • Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 이영인 (서울과학기술대학교 신소재공학과)
  • Received : 2015.08.17
  • Accepted : 2015.08.24
  • Published : 2015.10.27

Abstract

One-dimensional (1D) silver nanostructures, which possess the highest conductivity among all room-temperature materials, moderate flexibility and high transmittance, are one of the most promising candidate materials to replace conventional indium tin oxide transparent electrodes. However, the short length and large diameter of 1D silver nanostructures cause a substantial decrease in the optical transparency or an increase in the sheet resistance. In this work, ultra-long silver nanofiber networks were synthesized with a low-cost and scalable electrospinning process, and the diameter of the nanofibers were finetuned to achieve a higher aspect ratio. The decrease in the diameter of the nanofibers resulted in a higher optical transparency at a lower sheet resistance: 87 % at $300{\Omega}/sq$, respectively. It is expected that an electrospun silver nanofiber based transparent electrode can be used as a key component in various optoelectronic applications.

Keywords

References

  1. P. B. Catrysse and S. Fan, Nano Lett., 10, 2944 (2010). https://doi.org/10.1021/nl1011239
  2. Y. I. Lee and Y. H. Choa, Korean J. Mater. Res., 22, 174 (2012). https://doi.org/10.3740/MRSK.2012.22.4.174
  3. L. Hu, H. Wu and Y. Cui, MRS bull., 36, 760 (2011). https://doi.org/10.1557/mrs.2011.234
  4. D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson and C. Zhou, Nano Lett., 6, 1880 (2006). https://doi.org/10.1021/nl0608543
  5. J. K. Wassei and R. B. Kaner, Mater. Today, 13, 52 (2010).
  6. D. S. Hecht, L. Hu and G. Irvin, Adv. Mater., 23, 1482 (2011). https://doi.org/10.1002/adma.201003188
  7. D. S. McLahan, M. Blaszkiewicz and R. E. Newham, J. Am. Ceram. Soc., 73, 2187 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb07576.x
  8. B. J. Last and D. J. Thouless, Phys. Rev. Lett., 27, 1719 (1971). https://doi.org/10.1103/PhysRevLett.27.1719
  9. Y. Sun and Y. Xia, Adv. Mater., 14, 833 (2002). https://doi.org/10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K
  10. D. Chen, X. Qiao, X. Qiu, J. Chen and R. Jiang, J. Colloid. Interf. Sci., 344, 286 (2010). https://doi.org/10.1016/j.jcis.2009.12.055
  11. J. Xu, J. Hu, C. Peng, H. Liu and Y. Hu, J. Colloid. Interf. Sci., 298, 689 (2006). https://doi.org/10.1016/j.jcis.2005.12.047
  12. Y. I. Lee and Y. H. Choa, Korean J. Mater. Res., 22, 562 (2012). https://doi.org/10.3740/MRSK.2012.22.10.562