• Title/Summary/Keyword: 유효균열길이

Search Result 38, Processing Time 0.019 seconds

A Numerical Study on Characteristics of Fluid Flow in Rough Fractures with Spatial Correlation Length and Mechanical Effect (공간적 상관길이와 역학적 효과에 따른 거친 단일 균열 내의 유체 흐름에 관한 수치적 연구)

  • Jeong, Woochang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.27-39
    • /
    • 2007
  • This paper investigates numerically characteristics of the fluid flow in spatially correlated variable-aperture fractures under effective normal stress conditions. Spatially correlated aperture distributions are generated by using the geostaistical method (i.e. Turning Bands algorithm). In order to represent a nonlinear relationship between the effective normal stress and the fracture aperture, a simple mechanical formula is combined with a local flow model. Obtained numerical results indicate that the fluid flow is significantly affected by the geometry of aperture distribution varying according to the applied effective normal stress as well as the spatial correlation length of aperture distribution. Moreover, by using results simulated in this study, the modified Louis formula representing the relationship between the effective normal stress and the effective permeability of fracture is proposed.

  • PDF

A Study on the Crack Behaviour of the Concrete Gravity Dam (콘크리트 중력댐의 균열거동에 관한 연구)

  • 장희석;손병락;김희성
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.353-362
    • /
    • 1999
  • This study is aimed to obtain the critical crack lengthes of the concrete gravity dam and to investigate variation of the effective stress intensity factors at the crack tips of multiple cracks. Applied loads are dynamic load composed of blast vibration and hydrodynamic pressure which can be considered in case of the blast work at near construction site, in addition to static load composed of hydrostatic pressure, crack pressure, and gravity load of the dam. The critical crack lengthes were calculated according to the crack locations, directions, and magnitudes of blast vibration. Also variation of the effective stress intensity factors with respect to the multiple crack shapes and distances between the crack tips was investigated.

  • PDF

Notch Sensitivity Analysis for the Rock Fracture Toughness (암석의 파괴인성계수와 균열감응도의 해석)

  • 백환조
    • Tunnel and Underground Space
    • /
    • v.7 no.2
    • /
    • pp.143-149
    • /
    • 1997
  • 암석의 파괴인성계수(fracture toughness)는 균열의 성장에 대한 암석의 저항을 나타낸다. 실험실에서 측정한 파괴인성계수는 일반적인 암석의 불균질성이나 이방성 외에도 시험편의 형상이나 하중조건에 의하여 크게 영향을 받는다. 따라서, 제한된 수의 시험편을 사용하여 측정된 파괴인성계수는 자료의 분산이 심하므로 실제 적용에 있어서 문제가 된다. 균열감응도란 파괴인성계수의 측정에 사용되는 시험편의 형상에 따라 결정되는 지수로서, 시험편의 파괴가 균열의 성장에 의한 것인지, 혹은 인장강도에 의한 것인지를 판별하는 기준이 된다. 이러한 균열감응도를 파악하여 암석의 파괴인성계수 측정에 유효한 시험편의 크기나 초기균열 길이의 범위를 설정할 수 있다. 이는 또한 실험실에서 측정된 차괴인성계수의 유효성 여부를 판별하는 기준으로 사용될 수 있다. 본 논문에서는 암석의 파괴인성계수의 측정에 흔히 사용되는 몇 가지 형태의 시험편들에 대하여 균열감응도를 계산하고 이에 따른 초기균열 길이의 범위를 제시하고자 한다.

  • PDF

A Numerical Study on Characteristics of Solute Transport in a Rough Single Fracture with Spatial Correlation Length and Effect of Effective Normal Stress (공간적 상관길이와 유효수직응력의 효과에 따른 거친 단일 균열내의 용질이동특성에 관한 수치적 연구)

  • Jeong, Woochang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.5-14
    • /
    • 2009
  • This study is to analyze numerically the spatial behaviors of the solute transport in a spatially correlated variable-aperture fracture under the effective normal stress conditions. Numerical results show that the solute transport in a fracture is strongly affected by the spatial correlation length of apertures and applied effective normal stress. According to increasing spatial correlation length, the mean residence time of solute is decreased and the tortuosity and Peclet number (is a dimensionless number relating the rate of advection of a flow to its rate of diffusion) is also decreased. These results mean that the geometry of the aperture distribution is favorable to the solute transport as the spatial correlation length is increased. However, according to the applied effective normal stress is increased, the mean residence time and tortuosity have a tendency to increase but the Peclet number is decreased. The main reason that the Peclet number is decreased, is that the solute is displaced by one or two channels with relatively higher local flow rate due to the increment of contact areas by increasing effective normal stress. Moreover, based on numerical results of the solute transport in this study, the exponential-type correlation formulae between the mean residence time and the effective normal stress are proposed.

  • PDF

Detection and Sizing of Fatigue Cracks in Thin Aluminum Panel with Rivet Holes (리벳구멍을 가진 알루미늄 패널에서 피로균열의 탐지와 균열길이 측정)

  • Kim, Jung-Chan;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.38-47
    • /
    • 2007
  • The initiation of fatigue cracks in a simulated aircraft structure with a series of rivet holes was detected by acoustic emission(AE), then the crack length was determined by surface acoustic wave(SAW) technique. With the initiation and growth of fatigue cracks, AE events increased intermittently to form a stepwise incremental curve of cumulative AE events whereas the crack length increased more or less monotonically. With the SAW technique employed, the crack sizing for 13 different cracks including some short cracks was performed. With the reference to the measurement by traveling microscope, cracks in the range of $1{\sim}8mm$ long were reliably sized by the SAW technique. Although it was impossible to size the short fatigue cracks in the range shorter than 1 mm, the SAW technique still appeared practically useful for a range of crack lengths often found in aircraft structures.

Analysis of Cracking Characteristics with Indenter Geometry Using Cohesive Zone Model (Cohesive Zone Model을 이용한 압입자 형상에 따른 균열특성분석)

  • Hyun, Hong Chul;Lee, Jin Haeng;Lee, Hyungyil;Kim, Dae Hyun;Hahn, Jun Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1453-1463
    • /
    • 2013
  • In this study, we investigated the effect of the indenter geometry on the crack characteristics by indentation cracking test and FEA. We conducted various cohesive finite element simulations based on the findings of Lee et al. (2012), who examined the effect of cohesive model parameters on crack size and formulated conditions for crack initiation and propagation. First, we verified the FE model through comparisons with experimental results that were obtained from Berkovich and Vickers indentations. We observed whether nonsymmetrical cracks formed beneath the surface during Berkovich indentation via FEA. Finally, we examined the relation between the crack size and the number of cracks. Based on this relation and the effect of the indenter angle on the crack size, we can predict from the crack size obtained with an indenter of one shape (such as Berkovich or Vickers) the crack size for an indenter of different shape.

Propagation of Crack in Concrete Subjected to Dynamic Loading (동적하중(動的荷重)을 받는 콘크리트의 구열(龜裂)성장)

  • Kang, Sung Hoo;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.135-145
    • /
    • 1988
  • This study deals with the prediction of crack propagation in concrete mortar subjected to static and dynamic load. Total 54 CLWL-DCB(Crack-line-loaded-double-cantilever beam) concrete mortar specimens were tested to measure crack growth using ASTM 561-80. Main variables were sand to cement ratio and water to cement ratio. The resulting load(P)-COD(Crack Opening Displacement; $2V_1$) curves and COD-CTOD (Crack Tip Opening Displacement; $2V_2$) curves were analyzed to calculate effective crack length and physical crack length by way of ASTM 561-80 proposed. Replica crack length were also obtained directly during the test. The differences in crack propagation between under static load and under dynamic load were investigated.

  • PDF

Numerical Experiments on the Evaluation of Effective Permeability and Tunnel Excavation in the Three Dimensional Fracture Network Model (3차원 균열연결망 모델에서의 유효투수계수 평가 및 터널굴착 지하수 유동해석에 대한 수치실험)

  • 장근무
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.275-286
    • /
    • 1998
  • The effective permeability and the representative element volume(REV) of fracture network model were evaluated based on the parameters such as permeability tensor, principal permeability and the direction of principal permeability. The effective permeability ranges between the harmonic mean and the arithmetic mean of the local permeabilities of subdivided blocks. From the numerical experiments, which were for investigating the influence of model volume on the variation of flux for the cubic models, it was found that the variation of flux became reduced as the model volume approached REV. The variation of groundwater flux into the tunnel in the fracture network model was mainly dependent on the ratio of the tunnel length to model size rather than REV. And it was found that groundwater flux into the tunnel was not completely consistent between the fracture network model and the equivalent porous media model, especially when the ratio of the tunnel length to model size is small.

  • PDF

A Study on Fracture Characteristics of Woven Carbon Fiber Reinforced Composite Material (직물탄소 섬유강화 복합재료의 파괴특성에 관한 연구)

  • 김광수;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.497-505
    • /
    • 1992
  • 본 연구에서는 최근에 개발된 직물 탄소섬유강화 복합재료의 파괴인성치를 정 량적으로 결정하고 파괴거동을 조사하고자 한다. 본 연구의 목적은 이 재료에 선형 탄성파괴역학의 적용여부를 알아보고, R곡선을 이용하여 균열의 생성점 및 불안정 파 괴점의 파괴인성치를 정확히 구하며, 주사형 전자현미경을 통해 파단면 및 균열 성장 시점을 관찰하여 파괴거동을 조사하는데 있다.

Development of Image Processing for Concrete Surface Cracks by Employing Enhanced Binarization and Shape Analysis Technique (개선된 이진화와 형상분석 기법을 응용한 콘크리트 표면 균열의 화상처리 알고리즘 개발)

  • Lee Bang-Yeon;Kim Yun-Yong;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.361-368
    • /
    • 2005
  • This study proposes an algorithm for detection and analysis of cracks in digital image of concrete surface to automate the measurement process of crack characteristics such as width, length, and orientation based on image processing technique. The special features of algorithm are as follows: (1) application of morphology technique for shading correction, (2) improvement of detection performance based on enhanced binarization and shape analysis, (3) suggestion of calculation algorithms for width, length, and orientation. A MATLAB code was developed for the proposed algorithm, and then test was performed on crack images taken with digital camera to examine validity of the algorithm. Within the limited test in the present study, the proposed algorithm was revealed as accurately detecting and analyzing the cracks when compared to results obtained by a human and classical method.