• Title/Summary/Keyword: 유한체 GF($2^{m}$)

Search Result 106, Processing Time 0.022 seconds

Design of Low-Latency Architecture for AB2 Multiplication over Finite Fields GF(2m) (유한체 GF(2m)상의 낮은 지연시간의 AB2 곱셈 구조 설계)

  • Kim, Kee-Won;Lee, Won-Jin;Kim, HyunSung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.2
    • /
    • pp.79-84
    • /
    • 2012
  • Efficient arithmetic design is essential to implement error correcting codes and cryptographic applications over finite fields. This article presents an efficient $AB^2$ multiplier in GF($2^m$) using a polynomial representation. The proposed multiplier produces the result in m clock cycles with a propagation delay of two AND gates and two XOR gates using O($2^m$) area-time complexity. The proposed multiplier is highly modular, and consists of regular blocks of AND and XOR logic gates. Especially, exponentiation, inversion, and division are more efficiently implemented by applying $AB^2$ multiplication repeatedly rather than AB multiplication. As compared to related works, the proposed multiplier has lower area-time complexity, computational delay, and execution time and is well suited to VLSI implementation.

Software Implementation of Elliptic Curve Cryptosystems over Binary Field for ARM7TDMI Processor (ARM7TDMI 프로세서를 사용한 $GF(2^{m})$상의 타원곡선 암호시스템 구현)

  • 신종훈;박동진;이필중
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2002.11a
    • /
    • pp.242-245
    • /
    • 2002
  • 본 논문은 ARM7TDMI 프로세서를 사용하여 유한체 GF(2$^{m}$ ) 상에 정의된 타원곡선 암호시스템을 구현한 결과를 제시한다. 타원곡선의 점을 표현하는 좌표계에 따른 비교를 하였고, 사전 계산과 사전 계산을 하지 않는 알고리즘의 구현 결과를 비교하고 있다.

  • PDF

A Digit Serial Multiplier Over GF(2m)Based on the MSD-first Algorithm (GF(2m)상의 MSD 우선 알고리즘 기반 디지트-시리얼 곱셈기)

  • Kim, Chang-Hoon;Kim, Soon-Cheol
    • The KIPS Transactions:PartA
    • /
    • v.15A no.3
    • /
    • pp.161-166
    • /
    • 2008
  • In this paper, an efficient digit-serial systolic array is proposed for multiplication in finite field GF($2^m$) using the polynomial basis representation. The proposed systolic array is based on the most significant digit first (MSD-first) multiplication algorithm and produces multiplication results at a rate of one every "m/D" clock cycles, where D is the selected digit size. Since the inner structure of the proposed multiplier is tree-type, critical path increases logarithmically proportional to D. Therefore, the computation delay of the proposed architecture is significantly less than previously proposed digit-serial systolic multipliers whose critical path increases proportional to D. Furthermore, since the new architecture has the features of a high regularity, modularity, and unidirectional data flow, it is well suited to VLSI implementation.

Efficient Modular Reduction for NIST Prime P-256 (NIST 소수 P-256에서 효율적인 모듈러 감산 방법)

  • Chang, Nam Su
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.511-514
    • /
    • 2019
  • Elliptic Curves Cryptosystem(ECC) provides the same level of security with relatively small key sizes, as compared to the traditional cryptosystems. The performance of ECC over GF(2m) and GF(p) depends on the efficiency of finite field arithmetic, especially the modular multiplication which is based on the reduction algorithm. In this paper, we propose a new modular reduction algorithm which provides high-speed ECC over NIST prime P-256. Detailed experimental results show that the proposed algorithm is about 25% faster than the previous methods.

Design of High-Speed Parallel Multiplier over Finite Field $GF(2^m)$ (유한체 $GF(2^m)$상의 고속 병렬 승산기의 설계)

  • Seong Hyeon-Kyeong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.36-43
    • /
    • 2006
  • In this paper we present a new high-speed parallel multiplier for Performing the bit-parallel multiplication of two polynomials in the finite fields $GF(2^m)$. Prior to construct the multiplier circuits, we consist of the MOD operation part to generate the result of bit-parallel multiplication with one coefficient of a multiplicative polynomial after performing the parallel multiplication of a multiplicand polynomial with a irreducible polynomial. The basic cells of MOD operation part have two AND gates and two XOR gates. Using these MOD operation parts, we can obtain the multiplication results performing the bit-parallel multiplication of two polynomials. Extending this process, we show the design of the generalized circuits for degree m and a simple example of constructing the multiplier circuit over finite fields $GF(2^4)$. Also, the presented multiplier is simulated by PSpice. The multiplier presented in this paper use the MOD operation parts with the basic cells repeatedly, and is easy to extend the multiplication of two polynomials in the finite fields with very large degree m, and is suitable to VLSI. Also, since this circuit has a low propagation delay time generated by the gates during operating process because of not use the memory elements in the inside of multiplier circuit, this multiplier circuit realizes a high-speed operation.

High Performance Elliptic Curve Cryptographic Processor for $GF(2^m)$ ($GF(2^m)$의 고속 타원곡선 암호 프로세서)

  • Kim, Chang-Hoon;Kim, Tae-Ho;Hong, Chun-Pyo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.3
    • /
    • pp.113-123
    • /
    • 2007
  • This paper presents a high-performance elliptic curve cryptographic processor over $GF(2^m)$. The proposed design adopts Lopez-Dahab Montgomery algorithm for elliptic curve point multiplication and uses Gaussian normal basis for $GF(2^m)$ field arithmetic operations. We select m=163 which is the smallest value among five recommended $GF(2^m)$ field sizes by NIST and it is Gaussian normal basis of type 4. The proposed elliptic curve cryptographic processor consists of host interface, data memory, instruction memory, and control. We implement the proposed design using Xilinx XCV2000E FPGA device. Based on the FPGA implementation results, we can see that our design is 2.6 times faster and requires significantly less hardware resources compared with the previously proposed best hardware implementation.

FPGA Design of Modified Finite Field Divider Using Extended Binary GCD Algorithm (확장 이진 GCD 알고리듬을 이용한 개선된 유한체 나눗셈 연산기의 FPGA 설계)

  • Park, Ji-Won;Kang, Min-Sup
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.925-927
    • /
    • 2011
  • 본 논문에서는 확장 이진 최대공약수 알고리듬 (Extended Binary GCD algorithm)을 기본으로 GF($2^m$) 상에서 유한체 나눗셈 연산을 위한 고속 알고리듬을 제안하고, 제안한 알고리듬을 기본으로 한 나눗셈 연산기의 FPGA 설계 구현에 관하여 기술한다. 제안한 알고리듬은 Verilog HDL 로 기술하였고, Xilinx FPGA virtex4-xc4vlx15 디바이스를 타겟으로 하였다.

A New Multiplication Algorithm and VLSI Architecture Over $GF(2^m)$ Using Gaussian Normal Basis (가우시안 정규기저를 이용한 $GF(2^m)$상의 새로운 곱셈 알고리즘 및 VLSI 구조)

  • Kwon, Soon-Hak;Kim, Hie-Cheol;Hong, Chun-Pyo;Kim, Chang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1297-1308
    • /
    • 2006
  • Multiplications in finite fields are one of the most important arithmetic operations for implementations of elliptic curve cryptographic systems. In this paper, we propose a new multiplication algorithm and VLSI architecture over $GF(2^m)$ using Gaussian normal basis. The proposed algorithm is designed by using a symmetric property of normal elements multiplication and transforming coefficients of normal elements. The proposed multiplication algorithm is applicable to all the five recommended fields $GF(2^m)$ for elliptic curve cryptosystems by NIST and IEEE 1363, where $m\in${163, 233, 283, 409, 571}. A new VLSI architecture based on the proposed multiplication algorithm is faster or requires less hardware resources compared with previously proposed normal basis multipliers over $GF(2^m)$. In addition, we gives an easy method finding a basic multiplication matrix of normal elements.

A Lightweight Hardware Implementation of ECC Processor Supporting NIST Elliptic Curves over GF(2m) (GF(2m) 상의 NIST 타원곡선을 지원하는 ECC 프로세서의 경량 하드웨어 구현)

  • Lee, Sang-Hyun;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.58-67
    • /
    • 2019
  • A design of an elliptic curve cryptography (ECC) processor that supports both pseudo-random curves and Koblitz curves over $GF(2^m)$ defined by the NIST standard is described in this paper. A finite field arithmetic circuit based on a word-based Montgomery multiplier was designed to support five key lengths using a datapath of fixed size, as well as to achieve a lightweight hardware implementation. In addition, Lopez-Dahab's coordinate system was adopted to remove the finite field division operation. The ECC processor was implemented in the FPGA verification platform and the hardware operation was verified by Elliptic Curve Diffie-Hellman (ECDH) key exchange protocol operation. The ECC processor that was synthesized with a 180-nm CMOS cell library occupied 10,674 gate equivalents (GEs) and a dual-port RAM of 9 kbits, and the maximum clock frequency was estimated at 154 MHz. The scalar multiplication operation over the 223-bit pseudo-random elliptic curve takes 1,112,221 clock cycles and has a throughput of 32.3 kbps.

Resource and Delay Efficient Polynomial Multiplier over Finite Fields GF (2m) (유한체상의 자원과 시간에 효율적인 다항식 곱셈기)

  • Lee, Keonjik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • Many cryptographic and error control coding algorithms rely on finite field GF(2m) arithmetic. Hardware implementation of these algorithms needs an efficient realization of finite field arithmetic operations. Finite field multiplication is complicated among the basic operations, and it is employed in field exponentiation and division operations. Various algorithms and architectures are proposed in the literature for hardware implementation of finite field multiplication to achieve a reduction in area and delay. In this paper, a low area and delay efficient semi-systolic multiplier over finite fields GF(2m) using the modified Montgomery modular multiplication (MMM) is presented. The least significant bit (LSB)-first multiplication and two-level parallel computing scheme are considered to improve the cell delay, latency, and area-time (AT) complexity. The proposed method has the features of regularity, modularity, and unidirectional data flow and offers a considerable improvement in AT complexity compared with related multipliers. The proposed multiplier can be used as a kernel circuit for exponentiation/division and multiplication.