• Title/Summary/Keyword: 유한요소해석 방법

Search Result 2,062, Processing Time 0.026 seconds

섭동법을 이용한 구조 재설계 기법

  • 김종현;임채환
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.22-25
    • /
    • 1994
  • 종래의 재설계 방법으로는 시행착오 방법이 있다. (Fig. 1 참고). 이 방법은 설계자의 경험이나 직관 등에 의하여 설계를 변경한 후 다시 구조해석을 하여 재설계조건의 만족여부를 확인하는 방법이다. 이때 재설계조건을 만족하지 않을 경우 설계를 다시 바꾸고 구조해석으로 재설계조 건을 확인하여야 한다. 따라서 이 방법은 비효율적이고 설계조건에 쉽게 맞추기도 어렵다. 이러한 단점을 보완한 새로운 재설계방법으로 민감도 해석(Sensitivity Analysis)과 섭동법(Perturbation )에 의한 방법이 있다. 민감도 해석은 설계조건을 설계변수의 민감도로 나타내는 방법이고 섭동 법은 설계조건을 설계변수들의 함수로 나타내는 방법이다. 대형구조물의 구조해석과 구조설계 문제는 대부분 유한요소법에 의존한다. 따라서 이러한 대형구조물의 재설계 도구가 되기 위해서 쟤설계 프로그램은 유한요소해석 프로그램의 후처리 프로그램(Postprocessor)으로 개발되어야 한다. 이러한 전제조건 때문에 설계가 끝나고 유한요소해석을 행한 후 재설계를 하기 위해서 유한요소해석 모델을 사용하는 것이 바람직하다.

  • PDF

Lumped Parameter Modelling and Analysis of Flat Coil Actuator with Shorted Turn (평판형 전자기 엑츄에이터의 집중매개변수 모델링 및 해석)

  • Hwang, Ki-Il;Kim, Jin-Ho;Lee, Jung-Hun
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.149-152
    • /
    • 2010
  • The flat coil actuator is widely used to make high precision products because it has no friction between the moving coil and the guide. Finite Element Method, a favored actuator design tool due to its high accuracy, was utilized to analyze the electromagnetic actuator, but it consumes a lot of time especially in computation iterations for optimization. Accordingly, the magnetic equivalent circuit analysis can be an alternative tool to FEM because of its computation iteration capability with fair accuracy. In this paper, lumped parameter model and the simulation results are presented. In addition, the result of lumped parameter analysis is compared with those obtained from finite element analysis for verification.

Analysis of Magnetic field with Line Source by Coupling FEM and Analytical Solution (유한요소법과 해석해의 결합에 의한 선전류 문제의 해석)

  • Cho, Jin-Seok;Kim, Young-Sun;Lee, Ki-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.55-59
    • /
    • 2004
  • 유한요소법을 이용하여 전자장을 해석할 경우 전류원이 전 영역에 비해 극히 작은 영역이면, 요소분할 과정에서 소스부분을 세분하여야 하므로 결국 미지수의 증가를 가져오게 된다. 또한, 선전류 문제의 경우 2차원 유한 요소 해석이 용이하지 않다. 이를 보안하기 위해 본 논문에서는 소스가 선전류이고 관심 영역이 선전류원으로부터 떨어져 있는 경우, 소스 영역은 해석해를 적용하여 유한요소법과 결합하는 방법을 제시하였다. 해석적인 해는 원통좌표계에서 반정에 대한 멱함수와 회전각도에 대한 삼각함수의 곱의 형태로 표현된다. 이때 두 종류의 적분 상수가 있는데, 이는 경계상의 포텐셜값과 유한요소법의 경계 적분항을 푸리에급수로 전개한 계수로 표현된다. 제안한 알고리즘의 검증을 위하여 해석해가 존재하는 모델을 설정하여 해석적인 방법, 기존의 유한요소 법 및 결합 방법에 의한 해를 비교 검증하였다.

  • PDF

Finite Element Vibration Analysis of Structures with Cyclic Symmetry using Discrete Fourier Transform (이산푸리에 변환을 이용한 순환대칭 구조물의 유한요소 진동 해석)

  • 김창부;김정락
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.221-226
    • /
    • 1995
  • 터빈 익렬, 펌프 익차, 원형 냉각탑, 치차 등과 같이 동일한 형상이 원주 방향으로 반복되어 있는 순환 대칭 구조물의 진동특성을 유한 요소법을 사용하여 해석하는 경우에 전체구조를 모델링하는 대신에 구조물을 동일한 형상의 부분구조로 분할하여 부분구조 한개만을 모델링하고 분할된 경계에서 적절한 경계조건을 부과하여 진동해석을 수행함으로서 컴퓨터 기억용량을 절감시키고 계산시간을 단축할 수 있는 방법이 널리 사용되고 있다. Orris and Petyt[1]는 부분구조의 양쪽 분할 경계면, 즉 연결 경계상에 있는 절점변위의 상관관계를 복소파동전파식을 이용해서 구하여 부분구조의 감소된 복소강성행렬 및 질량행렬을 만들고 실수부와 허수부를 분리하여 유한요소해석을 수행하는 방법을 제안하였다. 유한요소 프로그램 ANSYS[2]에서는 이와 같은 방법을 사용하고 있다. Thomas[3]는 순회 정규모드를 이용하였고, 참고문헌[4]에서는 순회행렬을 이용하였다. 또한 유한요소 프로그램 MSC/NASTRAN[5]에서는 푸리에 급수를 이용하고 유한요소 절점의 위치 및 변위를 원통 좌표계를 표현하여 순환대칭구조물의 유한요소해석을 수행할 수 있도록 되어있다. 본 논문에서는 순환 대칭구조물의 형상의 주기성과 순환성을 고려하여 이산퓨리에 변환을 이용함으로써 순환대칭구조물의 유한요소진동해석을 체계적으로 저용량의 컴퓨터에서 신속하고 정확하게 수행할 수 있는 방법을 제안하고자 한다.

  • PDF

Model and Method for Post-Failure Analysis of Composite Structure (복합재 구조물의 초기파손후의 거동묘사를 위한 모델과 해석방법)

  • 김용완;황창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.506-513
    • /
    • 1992
  • 본 연구에서는 복합재 구조물에 대하여 유한요소해석법에 현상학적 모델인 전 단지연해석을 도입하여 강성저하와 모재파손을 예측하고 변형률을 매개변수로 한 Wei- bull 함수를 섬유파손해석에 도입하여 초기파손후의 거동을 묘사하고자 한다. 그리 고 면내전단하중이 작용하는 경우에 대해 전단지연해석을 수행할 수 있도록 모델링을 확장했다. 모재균열의 존재로 인한 단층의 강성변화는 실험으로 측정이 불가능하므 로 유한요소해석을 수행하여 비교하였다. 이 모델로부터 전단강성의 저하를 평가하 는 방법을 사용하였으며, 모재파손의 밀도 예측도 평균변형률 개념으로 전단효과를 고 려할 수 있도록 수정하였다. 그리고 초기파손후의 거동을 점진적으로 해석하기 위해 비선형 유한요소프그램을 작성하고, 상기의 모델을 도입하여 초기파손후의 거동을 보 다 정확히 묘사할 수 있는 방법을 제시하고 예로서 평시편에 대해 해석하고 실험치 및 타방법의 결과와 비교하였다.

Adaptive Finite Element Analysis of 2-D Plane Problems Using the rp-Method (절점이동과 단항증가법에 의한 이차원 평면문제의 적응 유한요소 해석)

  • 박병성;임장근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • Adaptive finite element analysis, in which its solution error meets with the user defined allowable error, is recently used to improve the reliability of finite element analysis results. This adaptive analysis is composed of two procedures; one is the error estimation of an analysis result and the other is the reconstruction of finite elements. In the (p-method, an element size is controlled by relocating of nodal positions (r-method) and the order of an element shape function is determined by the hierarchical polynomial (p-method) corresponding to the clement solution error by the enhanced SPR. In order to show the effectiveness and the accuracy of the suggested rp-method, various numerical examples were analyzed and these analysis results were examined by comparing with those obtained by the existed methods.

Inverse Estimation of Fatigue Life Parameters for Spring Design Optimization (스프링 최적설계를 위한 피로수명 파라미터의 역 추정)

  • Kim, Wan-Beom;An, Da-Wn;Choi, Joo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.345-348
    • /
    • 2011
  • 구조요소의 설계에서 유한요소해석은 매우 효과적인 방법이다. 이 방법은 시험 수행에 드는 시간과 비용을 줄여준다. 그러나 공정 과정과 환경에 의하여 생기는 입력 물성치들의 변화 때문에 우리는 유한요소해석의 결과를 전적으로 믿어서는 안 된다. 따라서 유한요소해석의 신뢰성을 증명하는 것은 매우 중요하다. 본 연구에서는 현장에 축적된 피로 수명 시험 데이터를 바탕으로 유한요소해석을 이용하여 피로수명 파라미터를 역 추정 하는 연구를 수행하였다. 베이지안 접근법을 이용하여 불확실성 피로 수명 파라미터의 사후분포를 구하였고, 마코프체인몬테카를로(Markov Chain Monte Carlo) 기법을 이용하여 역 추정된 파라미터의 샘플 데이터를 생성하였다. 얻어진 샘플 데이터를 기반으로 새로운 형상의 스프링에 대한 피로 수명을 예측한다. 신뢰성 기반 형상 최적화(RBDO)는 서스펜션 코일 스프링의 요구수명을 만족시키기 위하여 수행된다. 또한 크리깅 근사 모델은 유한요소해석의 연산 량 감소를 위해 이용한다.

  • PDF

Stochastic Finite Element Analysis of Semi-infinite Domain by Weighted Integral Method (가중적분법에 의한 반무한영역의 추계론적 유한요소해석)

  • 최창근;노혁천
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.2
    • /
    • pp.129-140
    • /
    • 1999
  • 추계론적 해석은 구조계 내의 해석인수에 존재하는 공간적 또는 시간적 임의성이 구조계 반응에 미치는 영향에 대한 고찰을 목적으로 한다. 확률장은 구족계 내에서 특정한 확률분포를 가지는 것으로 가정된다. 구조계 반응에 대한 이들 확률장의 영향 평가를 위하여 통계학적 추계론적 해석과 비통계학적 추계론적 해석이 사용되고 있다. 본 연구에서는 비통계학적 추계론적 해석방법 중의 하나인 가중적분법을 제안하였다. 특히 구조계의 공간적 임의성이 큰 특성을 가지고 있는 반무한영역에 대한 적용 예를 제시하고자 한다. 반무한영역의 모델링에는 무한요소를 사용하였다. 제안된 방법에 의한 해석 결과는 통계학적 방법인 몬테카를로 방법에 의한 결과와 비교되었다. 제안된 가중적분법은 자기상관함수를 사용하여 확률장을 고려하므로 무한영역의 고려에 따른 해석의 모호성을 제거할 수 있다. 제안방법과 몬테카를로 방법에 의한 결과는 상호 잘 일치하였으며 공분산 및 표준편차는 무한요소의 적용에 의하여 매우 개선된 결과를 나타내었다.

  • PDF

Stochastic Finite Element Analysis by Using Quadrilateral Elements (사변형 요소를 이용한 추계론적 유한요소해석)

  • Choi, Chang Koon;Noh, Hyuk Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.29-37
    • /
    • 1993
  • The extension of the weighted integral method in the area of stochastic finite element analysis is presented. The use of weighted integral method in numerical analysis was extended to CST(constant strain triangle) element by Deodatis to calculate the response variability of 2D stochastic systems. In this paper, the extension of the weighted integral method for general plane-elements is represented. It has been shown that the same mesh used in the deterministic FE analysis can be used in the stochastic FE analysis. Furthermore, because the CST element is a special case which has constant strain-displacement matrix the mingling of CST elements with the other quadrilateral elements in the analysis may also be possible.

  • PDF

무한요소(Infinite Elements)를 이용한 기초공학해석

  • 양신추
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.9-12
    • /
    • 1991
  • 공학문제에 있어서, 해석적으로 접근할 수 없었던 많은 경우의 문제들이 유한요소법(Finite Element Methods)의 정형화된 모형화 및 해석과정을 통하여 쉽게 접근되어질 수 있었다. 최근 보다 효율적인 요소개발과 컴퓨터 기술의 발달로 유한요소법은 더욱 효과적인 해석 수단이 되어가고 있다. 그러나 지반공학 문제와 같은 무한영역 문제를 유한요소법으로 해석할 경우, 매우 큰 영역을 모형화하기 위하여 많은 수의 요소가 요구되며 이에 따른 자유도(Degree of Freedom) 수의 증가로 많은 계산시간을 요구하게 된다. 본 고는 무한영역 문제를 효과적으로 모형화하기 위하여 연구, 개발되어진 무한요소(Infinite Element)에 대하여 소개하려 한다. 무한요소의 기본개념과 강성행렬의 형성방법을 보인 후, 기초공학 문제를 예로 하여 이의 적용방법을 간략하게 설명하였다.

  • PDF