• Title/Summary/Keyword: 유한변형

Search Result 1,965, Processing Time 0.027 seconds

Formulation of Dynamic Cyclic Plasticity Model for SM490 and Its Application to 3-Dimensional Elastic-Plastic Finite Element Analysis (SM490강재의 동적반복소성모델의 정식화 및 3차원 탄소성 유한요소해석의 적용)

  • Chang, Kyong Ho;Jang, Gab Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.465-471
    • /
    • 2006
  • To describe hysteretic behavior of steel structures under dynamic loading such as earthquake, the dynamic cyclic plasticity model considering stress-strain relationship and characteristics of used steel materials under static-dynamic deforming is required. In this paper, mechanical characteristics and stress-strain relationship of SM490 was clarified by carrying out static-dynamic monotonic and cyclic loading test. A dynamic cyclic plasticity model of SM490 was proposed based on the test results and applied 3-dimensional finite element analysis using finite deformation theory. An analytical method developed by the authors was verified validity and accuracy by comparing both analysis and test results. The comparison result shows that the analytical method developed by the authors can predict static-dynamic hysteretic behavior of steel structures with accuracy.

Analysis of Anisotropic Laminated Cylindrical Shells with Shear Deformation (전단변형을 고려한 비등방성 원통형 쉘의 해석)

  • Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.373-384
    • /
    • 1999
  • The shell structures with composite materials have the advantages in strength, corrosion resistance, and weight reduction. The objective of this study is to analyze anisotropic composite circular cylindrical shells with shear deformation theory. In applying numerical methods to solve differential equations of anisotropic shells, this paper use finite difference method. The accuracy of the numerical method can be improved by taking higher order of interval ${\Delta}$ to reduce error. This study compares the results of finite difference method with the results of ANSYS based on finite element method. Several numerical examples show the advantages of the stiffness increasement when the composite materials aroused. Therefore, it is expected that results of this study give various guides for change of the subtended angles, load cases, boundary conditions, and side-to-thickness ratio.

  • PDF

Finite Element Formulation Based on Enhanced First-order Shear Deformation Theory for Thermo-mechanical Analysis of Laminated Composite Structures (복합소재 적층 구조물에 대한 열-기계적 거동 예측을 위한 개선된 일차전단변형이론의 유한요소 정식화)

  • Jun-Sik Kim;Dae-Hyeon Na;Jang-Woo Han
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.117-125
    • /
    • 2023
  • This paper proposes a new finite element formulation based on enhanced first-order shear deformation theory including the transverse normal strain effect via the mixed formulation (EFSDTM-TN) for the effective thermo-mechanical analysis of laminated composite structures. The main objective of the EFSDTM-TN is to provide an accurate and efficient solution in describing the thermo-mechanical behavior of laminated composite structures by systematically establishing the relationship between two independent fields (displacement and transverse stress fields) via the mixed formulation. Another key feature is to consider the thermal strain effect without additional unknown variables by introducing a refined transverse displacement field. In the finite element formulation, an eight-node isoparametric plate element is newly developed to implement the advantage of the EFSDTM-TN. Numerical solutions for the thermo-mechanical behavior of laminated composite structures are compared with those available in the open literature to demonstrate the numerical performance of the proposed finite element model.

Determination of Mechanical Properties of Galvanized Steel Sheets Using Instrumented Indentation Technique and Finite Element Analysis (계장화 압입시험 및 유한요소해석을 이용한 아연도금강판의 기계적 물성 추정)

  • Jin, Ji-Won;Kwak, Sung-Jong;Kim, Tae-Seong;Noh, Ki-Han;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.529-535
    • /
    • 2012
  • This paper deals with the determination of mechanical properties of various galvanized steel sheets that are used for fabricating automobile bodies; the instrumented indentation technique and finite element analysis were used for the determination. First, tensile tests were conducted to obtain the true stress-true strain curves of galvanized steel sheets with various thicknesses. Load-deformation curves were then obtained by using the instrumented indentation testing machine, and they were compared with load-deformation curves obtained by finite element analysis. Further, true stress-true strain curves were obtained at the optimal observation point by finite element analysis.

Plane-Strain Analysis of Auto-Body Panel Using the Rigid-Plastic Finite Element Method (강소성 유한요소법을 이용한 자동차 판넬 성형공정의 평면 변형해석)

  • 양동열;정완진;송인섭;전기찬;유동진;이정우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.169-178
    • /
    • 1991
  • A plane-strain finite element analysis of sheet metal forming is carried out by using the rigid-plastic FEM based on the membrane theory. The sheet material is assumed to possess normal anisotropy and to obey Hill's new yield criterion and its associated flow rule. A formulation of initial guess generation for the displacement field is derived by using the nonlinear elastic FEM. A method of contact treatment is proposed in which the skew boundary condition for arbitrarily shaped tools is successively used during iteration. In order to verify the validity of the developed method, plane-strain drawing with tools in analytic expression and with arbitrarily shaped tools is analyzed and compared with the published results. The comparison shows that the present method can be effectively used in the analysis of plane-strain sheet metal forming and thus provides the basis of approximate sectional analysis of panel-like sheet forming.

Geometric Non-linear Analysis of the Plane Frame Structures including Shear Deformation Effect (전단변형(剪斷變形)을 고려(考慮)한 평면(平面)뼈대 구조물(構造物)의 기하적(幾何的)인 비선형(非線形) 해석(解析))

  • Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 1990
  • Two beam/column elements in order to analyze the geometric nonlinear plane framed structures including the effects of transverse shear deformation and bending stretching coupling are developed. In the case of the first element (finite segment method), tangent stiffness matrix are derived by directly integrating the equilibrium equations whereas in the case of the second element (finite element method) elastic and geometric stiffness matrices are calculated by using the hermitian polynomials including shear deformation effect as the shape function. Both elements possess the usual six degree of freedoms. Numerical results are presented for the selected test problems which demonstrate that both elements represent reliable and highly accurate tools.

  • PDF

Calculation of Poroelastic Parameters of Porous Composites by Using Micromechanical Finite Element Models (미시역학적 유한요소 모델을 이용한 다공성 복합재료의 기공 탄성 인자 산출)

  • Kim, Sung-Jun;Han, Su-Yeon;Shin, Eui-Sup
    • Composites Research
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • In order to predict the thermoelastic behavior of porous composites, poroelastic parameters are measured by using micromechanics-based finite element models. The expanding deformation caused by pore pressure, and the degradation of homogenized elastic moduli with pores are calculated for the assessment of the poroelastic parameters. Various representative volume elements considering the shape, size, and array pattern of pores are modeled and analyzed by a finite element method. The effects of porosity and material anisotropy, and the distribution of stain energy density are investigated carefully. In addition, the measured poroelastic parameters are verified by predicting the thermo-pore-elastic behavior of carbon/phenolic composites.

A Basic Design and Characterization on Composite Bone Plate for Bone Fracture Healing (골절 치료를 위한 복합재료 고정판 기초 설계 및 특성 평가)

  • Kim, Ju-Ho;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.7-12
    • /
    • 2007
  • This paper aims to enhance the efficiency of bone fracture healing with bone plate made of fiber reinforced composite materials. The composite bone plate was designed as the same dimension and shape as the existing stainless steel bone plate. To find out the appropriate stacking sequence of the composite bone plate the variations of strain distributions were calculated using FE analysis when the bone plates were applied to the fracture site. From the analysis result it was found that the composite bone plate whose Young's modulus is lower than that of metal bone plate gave more uniform strain distribution and provided appropriate condition for callus formation and its development.

A C Finite Element of Thin-Walled Laminated Composite I-Beams Including Shear Deformation (전단변형을 고려한 적층복합 I형 박벽보의 C유한요소)

  • Baek, Seong-Yong;Lee, Seung-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.349-359
    • /
    • 2006
  • This paper presents a new block stiffness matrix for the analysis an orthogonal Cartesian coordinate system. The displacement fields are defined using the first order shear deformable beam theory. The longitudinal displacement can be expressed as the sum of the projected plane deformation of the cross-section due to Timoshenko's beam theory and axial warping deformation due to modified Vlasov's thin-waled beam theory. The derived element takes into account flexural shear deformation and torsional warping deformation. Three different types of beam elements, namely, the two-noded, three-noded, and four-noded beam elements, are developed. The quadratic and cubic elements are found to be very efficient for the flexural analysis of laminated composite beams. The versatility and accuracy of the new element are demonstrated by comparing the numerical results available in the literature.

Finite Element Analysis of Strain Localization in Concrete Considering Damage and Plasticity (손상과 소성을 고려한 콘크리트 변형률 국소화의 유한요소해석)

  • 송하원;나웅진
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.241-250
    • /
    • 1997
  • The strain localization of concrete is a phenomenon such that the deformation of concrete is localized in finite region along with softening behavior. The objective of this paper is to develop a plasticity and damage algorithm for the finite element analysis of the strain-localization in concrete. In this paper, concrete member under strain localization is modeled with localized zone and non-localized zone. For modeling of the localized zone in concrete under strain localization, a general Drucker-Prager failure criterion by which the nonlinear strain softening behavior of concrete after peak-stress can be considered is introduced in a thermodynamic formulation of the classical plasticity model. The return-mapping algorithm is used for the integration of the elasto-plastic rate equation and the consistent tangent modulus is also derived. For the modeling of non-localized zone in concrete under strain localization, a consistent nonlinear elastic-damage algorithm is developed by modifying the free energy in thermodynamics. Using finite element program implemented with the developed algorithm, strain localization behaviors for concrete specimens under compression are simulated.

  • PDF