• Title/Summary/Keyword: 유클리드 원론

Search Result 18, Processing Time 0.03 seconds

On the Algebraic Concepts in Euclid's Elements (유클리드의 원론에 나타난 대수적 개념에 대하여)

  • 홍진곤;권석일
    • Journal for History of Mathematics
    • /
    • v.17 no.3
    • /
    • pp.23-32
    • /
    • 2004
  • In this paper, Ive investigated algebraic concepts which are contained in Euclid's Elements. In the Books II, V, and VII∼X of Elements, there are concepts of quadratic equation, ratio, irrational numbers, and so on. We also analyzed them for mathematical meaning with modem symbols and terms. From this, we can find the essence of the genesis of algebra, and the implications for students' mathematization through the experience of the situation where mathematics was made at first.

  • PDF

Implications of Euclid Elements for the Understanding of Elementary Mathematics Textbooks (초등학교 수학 교과서의 이해에 유클리드 원론이 주는 시사점)

  • Hong, Gap Ju;Kang, Jeong Min
    • Education of Primary School Mathematics
    • /
    • v.20 no.1
    • /
    • pp.117-130
    • /
    • 2017
  • Euclid's elements have been recognized as a significant textbook in mathematics and mathematics education because of importance of its contents and methodology. This study discussed how the elements is connected with understanding of math textbooks in elementary school, trying to reveal the value for teacher training. First, when details in elementary textbooks were considered in aspect of elements, the importance of elements was illustrated with the purpose of understanding contents of elementary school by examining educational implications. In addition, the study discussed the value of the elements as the place for teachers and would-be teachers to experience math system.

The Diorism in Proposition I-22 of 『Euclid Elements』 and the Existence of Mathematical Objects (『유클리드 원론』 I권 정리 22의 Diorism을 통해서 본 존재성)

  • Ryou, Miyeong;Choi, Younggi
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.3
    • /
    • pp.367-379
    • /
    • 2015
  • The existence of mathematical objects was considered through diorism which was used in ancient Greece as conditions for the existence of the solution of the problem. Proposition I-22 of Euclid Elements has diorism for the existence of triangle. By discussing the diorism in Elements, ancient Greek mathematician proved the existence of defined object by postulates or theorems. Therefore, the existence of mathematical object is verifiability in the axiom system. From this perspective, construction is the main method to guarantee the existence in the Elements. Furthermore, we suggest some implications about the existence of mathematical objects in school mathematics.

The relation of the angle sum of a triangle and the property of parallel lines in Elementary school mathematics (초등학교 수학에서 삼각형 내각의 합과 평행선의 성질의 연계성)

  • Hong, Gap Ju;Song, Myeong Seon
    • Education of Primary School Mathematics
    • /
    • v.16 no.2
    • /
    • pp.183-192
    • /
    • 2013
  • This study points out that the angle sum of a triangle and the property of parallel lines are taught without showing any relations between them on elementary school mathematics textbooks. This study looks into the structure of Euclid Elements so that it discusses about the contents of current Korean textbooks. The property of the alternate angles and the corresponding angles of parallel lines are inherent in many subjects in Elementary school mathematics, and have meaning that must be thought with the angle sum of triangles in the structure of Euclid Elements. With this consideration, this study makes a conclusion that these two subjects should be taught by presenting relations between them.

A Study on the Thought of a Point in Mathematics (수학에 점의 사유에 대한 고찰)

  • Youn, Ho-Chang
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2012.05a
    • /
    • pp.141-142
    • /
    • 2012
  • 점과 선은 도형의 기초이며 수학과 물리학에서 중요한 요소라고 할 수 있다. 도형의 발달은 고대 이집트에서 이루어졌으며 이러한 도형의 발달은 그리스에서 체계화 되었으며 대표적으로 유클리드의 '기하학 원론'에서 점과 선에 대한 정의와 공리 등에 인하여 기하학은 발전하였다. 이러한 점에 관한 정의는 시대에 따라 재해석되고 논쟁과 토론의 과정을 거쳐왔으며. 즉 '점이 부분이 없는 것'이라는 기하학 원론'의 정의는 점의 존재성에 대한 다양한 철학적 사유를 이끌었으며 19세기 수학 기초의 위기 속에서 다양한 수학적 접근법이 나타나게 되었다. 본 논문에서는 점의 기존의 정의와 다양한 접근 방법에 대해서 살펴보고자 한다.

  • PDF

About the Euclid's book on divisions of figures (유클리드의 분할론(${\pi}{\varepsilon}{\rho}{\acute}{\iota}}\;{\delta}{\iota}{\alpha}{\iota}{\rho}{\acute{\varepsilon}}{\sigma}{\varepsilon}{\omega}{\nu}\;{\beta}{\iota}{\beta}{\lambda}{\acute{\iota}}o{\nu}$)에 대하여)

  • Do, Jong-Hoon
    • Journal for History of Mathematics
    • /
    • v.24 no.2
    • /
    • pp.31-46
    • /
    • 2011
  • [ ${\ll}$ ]n divisions of figures(${\pi}{\varepsilon}{\rho}{\acute{\iota}}\;{\delta}{\iota}{\alpha}{\iota}{\rho}{\acute{\varepsilon}}{\sigma}{\varepsilon}{\omega}{\nu}\;{\beta}{\iota}{\beta}{\lambda}{\acute{\iota}}o{\nu}$)${\gg}$ is one of the works written by Euclid, but little known to us. In this paper, we introduce this Euclid's book on divisions of figures with its brief history, analyse its contents, and discuss how to use it in mathematics education.

Derivating the Ratios of Trigonometric Special Angles by Constructing Regular Polygon (정오각형 작도에 의한 특수각의 삼각비 유도)

  • Cho, Cheong-Soo
    • Journal for History of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.79-90
    • /
    • 2006
  • The purpose of this paper is to derive the ratios of trigonometric special angles from Euclid's by constructing regular pentagon and decagon. The intention of this paper is started from recognizing that teaching of the special angles in secondary math classroom excessively depends on algebraic approaches rather geometric approaches which are the origin of the trigonometric ratios. In this paper the method of constructing regular pentagon and decagon is reviewed and the geometric relationship between this construction and trigonometric special angles is derived. Through such geometric approach the meaning of trigonometric special angles is analyzed from a geometric perspective and pedagogical ideas of teaching these trigonometric ratios is suggested using history of mathematics.

  • PDF

On the data of Euclid (유클리드의 자료론(Euclid's Data)에 대하여)

  • Yoon, Dae-Won;Suh, Bo-Euk;Kim, Dong-Keun
    • Journal for History of Mathematics
    • /
    • v.21 no.2
    • /
    • pp.55-70
    • /
    • 2008
  • This study is about the Data which is one of Euclid's writing. It dealt with the organization of contents, formal system and mathematical meaning. First, we investigated the organization of contents of the Data. Second, on the basis of this investigation, we analyzed the formal system of the Data. It contains the analysis of described method of definition, proposition, proof and the meaning of 'given'. Third, we explored the mathematical meaning of the Data which can be classified as algebraic point of view, geometric point of view and the opposite point of view to 'The Elements'.

  • PDF

Two fundamental direction over historical research of mathematics and geometrical algebra (수학사 연구 방향의 두 갈래와 '기하학적 대수학')

  • Han, Kyeong-Hye
    • Journal for History of Mathematics
    • /
    • v.20 no.2
    • /
    • pp.33-46
    • /
    • 2007
  • In this Paper the change of trends over historical research of mathematics, that has been developed since 1970, is inquired. Most of all it deals with the controversy concerning so-called 'geometrical algebra'. It covers the contents of Euclid' work II. And the relation of the controversy with the change of direction over historical research of mathematics is examined.

  • PDF

소인수분해정리와 유클리드의 원론

  • 강윤수
    • Journal for History of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.33-42
    • /
    • 2004
  • In this paper, we identify the essential ideas of Fundamental Theorem of Arithmetic(FTA). Then, we compare these ideas with several theorems of Euclid's Elements to investigate whether the essential ideas of FTA are contained in Elements or not. From this, we have the following conclusion: Even though Elements doesn't contain FTA explicitly, it contains all of the essential ideas of FTA. Finally, we assert two reasons why Greeks couldn't mention FTA explicitly. First, they oriented geometrically, and so they understood the concept of 'divide' as 'metric'. So they might have difficulty to find the divisor of the given number and the divisor of the divisor continuously. Second, they have limit to use notation in Mathematics. So they couldn't represent the given composite number as multiplication of all of its prime divisors.

  • PDF