• Title/Summary/Keyword: 유체진동해석

Search Result 491, Processing Time 0.035 seconds

Lumped Parameter Model of Transmitting Boundary for the Time Domain Analysis of Dam-Reservoir System (댐의 시간영역 지진응답 해석을 위한 호소의 집중변수모델)

  • 김재관;이진호;조정래
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.27-38
    • /
    • 2001
  • A mechanical lumped parameter model is proposed for the dynamic modeling of a semi-infinite reservoir. A semi-analytic transmitting boundary is derived for a semi-infinite 2-D reservoir of constant depth. The characteristics of the solution are examined in both frequency and time domains. Mass, damping and spring coefficients of the mechanical model are obtained to preserve the major features of the solution such as eigenfrequencies and the shapes of Bessel functions that appear as kernels in the convolution integrals. The lumped parameter model in its final form consists of two masses, a spring and two dampers for each eigenfrequency. Application examples demonstrated that the new lumped parameter model could be used for the time domain analysis of dam-reservoir systems.

  • PDF

A Study on Longline Type Aquaculture Facilities in the Open Sea : Frequency Domain Analysis of Cable-Buoy-Weight Mooring System (내파성 가리비 연승식 양식시설에 관한 연구 - 케이블-부이-중량물 계류시스템의 주파수 영역 해석 -)

  • Shin, H.;Kim, D.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.162-174
    • /
    • 1996
  • Longline type aquaculture facilities in the open sea are based on the cable-buoy-weight mooring system. For their optimal design it is necessary to estimate tensions along the mooring lines including the attachment points of buoys and weights. However, the dynamic analysis is very complicated due to the nonlinear behaviors of the mooring lines and the effects of wave and current. In this paper, parametric studies for various buoy-weight cases are shown. Finite difference scheme is employed in obtaining eigenfrequencies in the frequency domain. Nonlinear hydrodynamic drag forces are equivalently linearized.

  • PDF

Enhanced Sluice Gate Design applied by Hydrostatic forces (정수역학적 작용력을 고려한 Sluice 게이트 하부 형상 개선)

  • Cho, Han Bum;Lee, Young Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.238-238
    • /
    • 2021
  • 토목 구조물에서 수문 (Gate)은 다양한 시설에서 설계되어 적용되고 있다. 이런 수문은 용도나규모, 사용재료, 구동방식에 의해 다양하게 분류되는데, 본 글에서 다룰 Girder 타입의 Sluice Gate 는 가장 많은 분야에서 포괄적으로 적용되는 수문 형식중 하나이다. 일반적으로 2m×2m 미만의 소규모 수문에서는 수문설계에 수리계산이나 응력검토를 요하지 않으나, 높이 5m 가 넘는 대형 수문의 경우 비체의 무게가 수십톤에 달하기 때문에 정수역학이나 동수역학과 같은 수리학적 설계가 반드시 필요하다. 수문설계는 크게 세 가지 해석을 다루는데, 첫 번째는 정수역학 또는 동수역학적 거동에 대한 수문 비체의 구조해석이고 두 번째는 수문의 상승 및 하강을 위한 권양장치 및 수문비체, 구동장치 등의 계산이며 마지막으로는 수문의 형상과 수류형상에 따른 수문의 진동해석 이다. 본 글에서는 두 번째에 해당하는 수문의 상승 및 하강에 영향을 미치는 수리학적 요소들을 통해 가장 합리적인 수문형상설계에 대해 논하고자 한다. 특히 국내에서는 Girder 타입의 수문설계에서 수문하단부 sill 부근의 형상을 쐐기 형태로 일률적으로 적용하고 있는데, 이를 개선하여 유체역학적으로나 경제적으로 보다 유리한 설계안을 본 글을 통해 제안하고자 한다.

  • PDF

Vibration Analysis for the In-plane Motions of a Semi-Circular Pipe Conveying Fluid Considering the Geometric Nonlinearity (기하학적 비선형성을 고려한 유체를 수송하는 반원관의 면내운동에 대한 진동 해석)

  • 정진태;정두한
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.2012-2018
    • /
    • 2004
  • The vibration of a semi-circular pipe conveying fluid is studied when the pipe is clamped at both ends. To consider the geometric nonlinearity, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe, considering the fluid inertia forces as a kind of non-conservative forces. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigate the dynamic characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies varying with the flow velocity are computed from the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. Finally, the time responses at various flow velocities are directly computed by using the generalized-$\alpha$ method. From these results, we should consider the geometric nonlinearity to analyze dynamics of a semi-circular pipe conveying fluid more precisely.

Semi-Active Control System Based on the Experimental Results of the Performance of a Small Scale MR Damper (소형 MR감쇠기의 성능 실험에 기초한 준능동 제어 시스템)

  • Min Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.233-238
    • /
    • 2006
  • In this paper, mixed mode magneto-rheological(MR) damper, which is applicable for vibration control of a small scale multi-story structure, is devised. First, the schematic configurations of the shear, flow, and mixed mode MR dampers are described with design constraints and then the analytical models to predict the field-dependent damping forces are derived for each type. Second, an appropriate size of the mixed mode MR damper is manufactured and its field-dependent damping characteristics are evaluated in time domain. Finally, the performance of the manufactured MR damper which is semi-actively applied to a small scale building excited by earthquake load, is numerically evaluated.

Numerical Analysis on Flow Phenomena of the Wake behind the Rectangular Obstacle in the Channel (관내 사각지주 후류의 유동현상에 대한 수치해석)

  • Min Yeong-Ui;Kim Yeon-Soo;Kim You-Gon
    • Journal of computational fluids engineering
    • /
    • v.6 no.2
    • /
    • pp.22-31
    • /
    • 2001
  • The two-dimensional unsteady incompressible viscous flow behind rectangular bluff bodies between two parallel plates was analyzed numerically. The steady state flow and the vortex flow behind rectangular bluff bodies in the channel were investigated for two regimes i.e., the laminar(Re = 100, 300, 500) and the turbulent flows(Re = 10⁴∼10/sup 6/). The vortex shedding was generated by a physical disturbance(6%) numerically imposed at the rear of the bluff bodies for a short time. It was observed that the perturbed flow became periodic after a transient period. And in the case of unsteady inflow, the sinusoidal pulsatile flow was applied as the inlet condition in the turbulent flow of Reynolds number of 1.0×10/sup 5/. FLUENT code was employed to solve the problems. The power-law scheme was used to get stable linearized equations and the PISO algorithm was applied to finding the solution of them.

  • PDF

New Non-linear Modelling for Vibration Analysis of a Straight Pipe Conveying Fluid (유체를 이송하는 직선관의 진동 해석을 위한 새로운 비선형 모델링)

  • Lee, Su-Il;Jeong, Jin-Tae;Im, Hyeong-Bin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.514-520
    • /
    • 2002
  • A new non-linear modelling of a straight pipe conveying fluid is presented for vibration analysis when the pipe is fixed at both ends. Using the Euler-Bernoulli beam theory and the non-linear Lagrange strain theory, from the extended Hamilton's principle are derived the coupled non-linear equations of motion for the longitudinal and transverse displacements. These equations of motion are discretized by using the Galerkin method. After the discretized equations are linearized in the neighbourhood of the equilibrium position, the natural frequencies are computed from the linearized equations. On the other hand, the time histories for the displacements are also obtained by applying the generalized-$\alpha$ time integration method to the non-linear discretized equations. The validity of the new modelling is provided by comparing results from the proposed non-linear equations with those from the equations proposed by Paidoussis.

Flow Analysis of a Low-Noise Turbo Fan for a Vacuum Cleaner (진공청소기용 저소음 터보팬 내부 유동 해석)

  • Lee, Ki-Choon;Kim, Chang-Jun;Hur, Nahmkeon;Jeon, Wan-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.4 s.21
    • /
    • pp.14-20
    • /
    • 2003
  • In this study an analysis of the flow characteristics in three types of turbo-fans for a vacuum cleaner was performed by using CFD. The characteristics of three models calculated for various rotating speed for flow rates are obtained and compared with measured data. The mixing plane approach is applied to compute the flow between impeller and diffuser. The results show that the model that is modified to reduce fan noise gives stable flow characteristics in operating range than the original model, with both models show similar performance characteristics at the range of high flow rate. Since in the modified model it takes much longer for an impeller blade to pass a diffuser blade than in the original model, and the peak pressure at BPF can be relieved, it is anticipated that the modified model give much lower noise level with similar performance than the original one, which remains to be verified by unsteady computation and measurements. The good agreement between the predictions and measurement results confirms the validity of this study.

Direct Numerical Simulation of the Flow Past an Oscillating Circular Cylinder (진동하는 원주주위 유동의 직접수치해석)

  • KANG Shin-Jeong;TANAHASHI Mamoru;MIYAUCHI Toshio;NAM Cheong-Do;LEE Young-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.181-188
    • /
    • 2001
  • The flow past a circular cylinder forced to vibrate transversely is numerically simulated by solving the two-dimensional Wavier-Stokes equations modified by the vibration velocity of a circular cylinder at a Reynolds number of 164. The higher-order finite difference scheme is employed for the spatial discretization along with the second order Adams-Bashforth and the first order backward-Euler time integration. The calculated cylinder vibration frequency is between 0.60 and 1.30 times of the natural vortex-shedding frequency. The calculated oscillation amplitude extends to $25\%$ of the cylinder diameter and in the case of the lock-in region it is $60\%$. It is made clear that the cylinder oscillation has influence on the wake pattern, the time histories of the drag and lift forces, power spectral density and phase diagrams, etc. It is found that these results include both the periodic (lock-in) and the quasi-periodic (non-lock-in) state. The vortex shedding frequency equals the driving frequency in the lock-in region but is independent in the non-lock-in region. The mean drag and the maximum lift coefficient increase with the increase of the forcing amplitude in the lock-in state. The lock-in boundaries are also established from the present direct numerical simulation.

  • PDF

Dynamic Characteristics of Cantilever Pipe Conveying Fluid with Moving Mass Considering Nozzle Angle (노즐 경사각을 고려한 이동질량을 가진 유체이송 외팔 파이프의 동특성 해석)

  • 윤한익;손인수;김현수;조정래
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.18-24
    • /
    • 2002
  • The vibrational system in this study consists of a cantilever pipe conveying fluid, the moving mass upon it, and an attached tip mass. The equation of motion is derived by using the Lagrange equation. The influences of the velocity and the velocities of fluid flow in the pipe have been studied on the dynamic behavior of a cantilever pipe using a numerical method. While the moving mass moves upon the cantilever pipe, the velocity of fluid flow and the nozzle angle increase; as a result, the tip displacement of the cantilever pipe, conveying fluid, is decreased. After the moving mass passes over the cantilever pipe, the tip displacement of the pipe is influenced by the potential energy of the cantilever pipe and the deflection of the pipe; the effect is the result of the moving mass and gravity. As the velocity of fluid flow and nozzle angle increases, the natural frequency of he system is decreased at the second mode and third mode, but it is increased at the first mode. As the moving mass increases, the natural frequency of the system is decreased at all modes.