• Title/Summary/Keyword: 유체입자 운동

Search Result 75, Processing Time 0.024 seconds

A Momentum-Exchange/Fictitious Domain-Lattice Boltzmann Method for Solving Particle Suspensions (부유 입자를 해석하기 위한 운동량 교환/가상영역-격자볼츠만 방법)

  • Jeon, Seok Yun;Yoon, Joon Yong;Kim, Chul Kyu;Shin, Myung Seob
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.347-355
    • /
    • 2016
  • This study presents a Lattice Boltzmann Method (LBM) coupled with a momentum-exchange approach/fictitious domain (MEA/FD) method for the simulation of particle suspensions. The method combines the advantages of the LB and the FD methods by using two unrelated meshes, namely, a Eulerian mesh for the flow domain and a Lagrangian mesh for the solid domain. The rigid body conditions are enforced by the momentum-exchange scheme in which the desired value of velocity is imposed directly in the particle inner domain by introducing a pseudo body force to satisfy the constraint of rigid body motion, which is the key idea of a fictitious domain (FD) method. The LB-MEA/FD method has been validated by simulating two different cases, and the results have been compared with those through other methods. The numerical evidence illustrated the capability and robustness of the present method for simulating particle suspensions.

Plasma개설 3

  • 성영권
    • 전기의세계
    • /
    • v.19 no.6
    • /
    • pp.39-44
    • /
    • 1970
  • 본고에서는 plasma전체의 거동에 대해서는 plasma를 전자기체 및 (+)이온기체로서 이루어지는 유체로서 취급을 하면 잘 부합되며 설명되는 경우가 많기 때문에 이 절에서는 plasma를 유체로서 취급하여 기술하기로 한다. 우선 plasma는 열운동을 하고 있는 하전입자의 집단이기때문에 그 거동은 기체운동론에서 사용되는 Baltamann방정식을 기초로 두어서 논하게 된다.

  • PDF

Direct-current Dielectrophoretic Motions of a Single Particle due to Interactions with a Nearby Nonconducting Wall (비전도성 벽과의 상호작용에 따른 단일 입자의 직류 유전영동 운동)

  • Kang, Sangmo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.425-433
    • /
    • 2015
  • In this paper, we have numerically investigated two-dimensional dielectrophoretic (DEP) motions of a single particle suspended freely in a viscous fluid, interacting with a nearby nonconducting planar wall, under an externally applied uniform direct-current electric field. Particularly, we solve the Maxwell equation with a large sharp jump in the electric conductivity at the particle-fluid interface and then integrate the Maxwell stress tensor to compute the DEP force on the particle. Results show that, under an electric field parallel to the wall, one particle is always repelled to move far away from the wall and the motion depends strongly on the particle-wall spacing and the particle conductivity. The motion strength vanishes when the particle is as conductive as the fluid and increases as the conductivity deviates further from that of the fluid.

Simulation of Solid Particle Sedimentation by Using Moving Particle Semi-implicit Method (고체 입자형 MPS법을 이용한 토사물 퇴적 시뮬레이션)

  • Kim, Kyung Sung;Yu, Sunjin;Ahn, Il-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.1
    • /
    • pp.119-125
    • /
    • 2018
  • The particle based computational fluid dynamics (CFD) method, which follow Lagrangian approach for fluid dynamics, fluid particle behavior by tracking all particle calculation physical quantities of each particle. According to basic concept of particle based CFD method, it is difficult to satisfy continuum theory and measure influences from neighboring particle. Article number density and weight function were used to solve aforementioned issue. Difficulties continuum mean simulate non-continuum particles such as solid including granular and sand. In this regard, the particle based CFD method modified solid particle problems by replacing viscous and surface tension forces friction and drag forces. In this paper, particle interaction model for solid particle friction model implemented to simulate solid particle problems. The broken dam problem, which is common to verify particle based CFD method, used fluid or solid particles. The angle of repose was observed in the simulation results the solid particle not fluid particle.

Analytical Approach of Eddy Interaction Model (Eddy Interaction Model의 해석적 접근)

  • Choi, Sung-Uk;Choi, Seongwook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.65-69
    • /
    • 2015
  • 하천에서 유사이동은 하천환경과 하천형상을 결정하는 주요 요소이므로 이를 해석하는 것은 매우 중요하다. 그러나 유사이동은 일반적으로 이상흐름 (two-phase flow)이며 난류를 동반하기에 이를 해석하기에는 쉽지 않다. 이상흐름을 해석하는 방법으로는 유사를 연속상인 유사구름(sediment cloud)으로 표현하여 해석하는 Euler-Euler 모형이 있으며 입자를 직접 추적하여 해석하는 Euler-Lagrange 모형이 있다. 본 연구에서는 유사이동 해석을 위하여 Euler-Lagrange 모형을 사용하였으며 흐름의 진동성분을 고려하기 위하여 EIM (Eddy Interaction Model)을 사용하였다. 유체의 유속은 Dou (1987)가 제시한 경험식을 사용하였고 난류운동에너지와 소산률은 Nezu and Nakagawa (1993)가 제시한 식을 사용하였다. EIM에서 입자에 발생하는 와의 영향시간(eddy interaction time)을 계산하기 위해 Gosman and Ioannides (1983)가 제시한 eddy lifetime과 eddy crossing time을 사용하였다. 유사입자는 입자의 운동량방정식을 풀어 그 거동을 추적하였으며 일정 시간 후 입자의 수를 이용하여 농도를 계산하였다. 유체에 발생하는 유속의 진동성분에 의해 입자가 부상하고 중력에 의해 흐름에 따른 일정한 농도분포 형태를 가지는 것을 확인하였다. 유사의 입자크기와 흐름에 따른 농도분포를 계산하였으며, 이를 측정치와 비교하여 EIM의 적용성을 확인하였다.

  • PDF

국지풍이 소규모만의 해수유동에 미치는 영향

  • 이충일;김동선;조규대
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.244-245
    • /
    • 2001
  • 육상 환경과 인접해 있는 연안해양환경은, 그 변화 특성이 매우 독특하며 복잡하게 나타난다. 해양환경 변화에 큰 영향을 미치는 것 중에는 해류와 조류 등과 같은 유체의 운동의 역할이 크다. 특히 바람과 같은 기상환경인자는 해표면의 유체의 운동에 큰 영향을 주게 되며, 이로 인하여 유체내의 입자물질(적조생물, 유류 등)의 집적 및 확산에 결정적인 영향을 끼치게 된다. 우리 나라는 계절풍이 뚜렷하게 나타나는 지역이지만, 지역에 따라서는 주변 지역과의 기압배치 및 지형적인 요인등에 의해서 그 특성이 충분히 변할 수 있다. 이러한 지역적인 국지풍은 만과 같은 소규모 지역에서 큰 영향을 끼칠 것으로 생각된다. (중략)

  • PDF

Model for Flow Analysis of Fresh Concrete Using Particle Method with Visco-Plastic Flow Formulation (점소성 유동 입자법에 의한 굳지 않은 콘크리트의 유동해석 모델)

  • Cho, Chang-Geun;Kim, Wha-Jung;Choi, Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.317-323
    • /
    • 2008
  • In the current study, A model for the flow analysis of fresh and highly flowable concrete has been developed using a particle method, the moving particle semi-implicit (MPS) method. The phenomena on the flow of concrete has been considered as a visco-plastic flow problem, and the basic governing equation of concrete particle dynamics has been based on the Navier-Stokes equation in Lagrangian form and the conservation of mass. In order to formulate a visco-plastic flow constitutive law of fresh concrete, concrete is modeled as a highly viscous material in the state of non-flow and as a visco-plastic material in the state of flow after reaching the yield stress of fresh concrete. A flow test of fresh concrete in the L-box was simulated and the predicted flow was well matched with the experimental result. The developed method was well showed the flow motion of concrete particles because it was formulated to be based on the motion of visco-plastic fluid dynamics.

Particle Simulation for Motion of 2-D Floating Body in Waves (파랑중 2차원 부유체 운동해석을 위한 입자법 시뮬레이션)

  • Park, Jong-Chun;Lee, Byung-Hyuk;Jung, Sung-Jun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.630-633
    • /
    • 2008
  • A particle method has been developed for analyzing the motion of 2-D floating body in waves. The particle method is based on the MPS(Moving Particle Semi-implicit) method suggested by Koshizuka et al. (1996), and the flow motion coupled with the motion of floating body can be simulated. The wavemaker and wave absorber are installed at the inflow and outflow boundaries in a computational domain, respectively. The motion characteristics of a floating body is investigated numerically under the various computational conditions.

  • PDF

Investigation on fluid-particle velocity double correlation in fluid- particle two-phase turbulent flows (유체에 입자가 부상된 2상난류운동에서 유체-입자속도 2차상관관계에 관한 연구)

  • 양선규;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1438-1449
    • /
    • 1988
  • An analysis of radiative heat transfer has been conducted on axisymmetric finite cylindrical media. It is assumed that the temperature in the media is uniformly distributed and the boundaries are diffusely emitting and reflecting at a constant temperature. The scattering phase function is represented by the delta-Eddington approximation to account for highly forward scattering by particulates just as in the combustion system. Exact numerical solutions are obtained by Gaussian quadrature method and compared with P-1 and P-3 approximation solutions to verify their engineering application limit. The effects of optical thickness, scattering albedo, wall emissivity and aspect ratio are investigated. The results show that P-3 approximation is found to be in good agreement with the exact solution.

Motion of Microbeads Propelled by Bacterial Chemotaxis (박테리아의 주화성에 의한 미세입자의 운동)

  • Kim, Dong-Wook;Kim, Young-Won;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.523-529
    • /
    • 2010
  • Recently, several research groups have been investigating the motion of flagellated bacteria, with the aim of examining the feasibility of using bacterial chemotaxis as an efficient power source for microactuators. In this study, microparticle-tracking velocimetry ($\mu$-PTV) is used for investigating the motion of fluorescent microbeads propelled by bacterial chemotaxis. Flagellated bacteria, Serratia marcescens, are spontaneously attached to the surface of the fluorescent polystyrene (PS) microbeads in an aqueous culture. The microbeads thus treated are injected into the test medium, which contains the solidified chemoattractant L-aspartate. With time, the particles slowly move toward the zone in which the L-aspartate concentration is high. This study shows that chemotaxis of flagellated bacteria can be applied as an efficient power source for microactuators.