• Title/Summary/Keyword: 유전자독성

Search Result 461, Processing Time 0.032 seconds

Phage display 방법을 이용한 항체의 생산

  • Sin, Sang-Taek;Baek, Ui-Hwan;Baek, Se-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.829-832
    • /
    • 2001
  • Phage display technique as a new antibody production method can express the protein on the minor coat of phage particle in a library constructed by utilizing a recombination of genes coding the variable regions of immunoglobulin. This new method is particularly advantageous in producing antibodies against toxic substances and compounds with low immunogenicities. We first confirmed the concept of antibody expression on the phage particle by selecting a positive control of the phage library (e.g., Griffin.l donated from MRC center in England). The library was then employed to produce antibodies specific to human serum albumin via repetitive bio-panning procedure. The mean affinity of the antibodies selected gradually increased along with the number of bio-panning, which demonstrated that the phage display method could produce monocloanl antibodies with high affinities.

  • PDF

RELATIONSHIP BETWEEN VIRULENCE, METABOLIC ACID AND GENETIC HETEROGENEITY OF PORPHYROMONAS GINGIVALIS (Porphyromonas gingivalis의 독성, 대사산물 및 유전자이종성과의 관련성)

  • Kim, Kang-Ju;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.1
    • /
    • pp.1-15
    • /
    • 1993
  • P. gingivalis has been implicated as a strong pathogen in periodontal disease and known to have three serotypes of P. gingivalis. The purpose of this study is to investigate on the relationship between virulence, metabolic acids and genetic heterogeneity of P. gingivalis. P. gingivalis W50 standard strain and five strains of P. gingivalis serotype b Korean isolates were used in this study. For in vitro virulence test, lyophilized whole cell P. gingivalis were suspended, and sonicated with ultrasonic dismembranometer. Sonicated samples were applied to cultured cells derived from periodontal ligament, and cell activity was assayed with growth and survival assay. The metabolic acids were also extracted, and determined by High Performance Liquid Chromatography. Pst I-digested bacterial genomic DNA was electrophoresed, and densitometric analysis was performed to study the genetic heterogeneity. All of the P. gingivalis serotype b produced butyric acid. In cell activity study, butyric acid inhibited the cell activity irrespective of its concentration. Densitometric analysis showed restriction fragment length polymorphism. These results suggested that there existed heterogeneity of the metabolic acids and the virulence of P. gingivalis and such heterogeneity might be related to genetic heterogeneity.

  • PDF

Hypoxia and NF-${\kappa}B$; The Relation to Chemoresistance (저산소증과 NF-${\kappa}B$의 항암제내성과의 연관성 고찰)

  • Yoon, Seong-Woo
    • Journal of Korean Traditional Oncology
    • /
    • v.15 no.1
    • /
    • pp.119-128
    • /
    • 2010
  • 항암치료는 현재 암환자의 주요한 치료임에도 불구하고 항암제내성과 같은 문제점을 가지고 있다. 약물내성은 다양한 기전에 의해 발생하는데 수송단백질의 과발현, 비독성화발현, 손상유전자의 복구, 세포사멸신호의 변화, STAT-3와 NF-${\kappa}B$의 발현 등이 포함된다. 암세포는 저산소환경에서 발생하며 일반세포에 비해 무산소해당에 상대적 의존도가 높고 이는 암세포의 성장과 전이를 촉진하는 인자가 된다. 항암제가 효과를 내기 위해서는 산소가 필요한데 저산소환경은 이를 방해하며 또한 유전자의 불안정화로 인해 약물내성이 유도된다. NF-${\kappa}B$는 주요 전사인자 중 하나로서 각종 염증과 암에서 지속적으로 활성화되며 암세포의 변화, 증식, 침윤, 전이에 관여한다. 환경적 스트레스 등과 대부분의 항암약제들이 NF-${\kappa}B$를 활성화시키며 임상적으로도 암환자의 생존과 연관된 중요한 예후인자이다. NF-${\kappa}B$의 발현은 항암제로 인한 암세포의 자멸을 회피하게 만들고 수송단백질을 활성화시켜 항암제내성을 유도한다. 강황, 적포도, 고추, 건칠 등 다양한 천연물에서 NF-${\kappa}B$를 억제시키는 효능이 발견되었으며 이는 항암제내성을 억제시키고 항암제의 효과를 증대시킨다. 저산소환경의 개선과 NF-${\kappa}B$의 억제는 상호연관성을 가지고 있으며 항암제내성의 개선뿐만 아니라 암치료제 개발의 새로운 연구목표가 될 수 있다.

  • PDF

Association Study between the Genetic Variants of the Human Atrial Natriuretic Peptide Gene and Essential Hypertension in Korean Population (한국인 집단에서 심방 나트륨 이뇨 펩티드 유전자에 존재하는 유전적 변이와 본태성 고혈압과의 관련성에 관한 연구)

  • Bae Joon-Seol;Kang Byung-Yong;Lee Kang-Oh;Lee Seung-Taek
    • Toxicological Research
    • /
    • v.22 no.2
    • /
    • pp.69-74
    • /
    • 2006
  • Hypertension leads to major health problems in many industrialized countries, and multiple etiologic factors are involved in the pathogenesis of this disorder. The genetic components of the natriuretic peptide system might be involved in the pathogenesis of hypertension. In this regard, the atrial natriuretic peptide (ANP) gene has been proposed as a candidate hypertension gene. Therefore, we investigated the G1837A and C-664G polymorphisms of the ANP gene in 143 Korean normotensives and 118 hypertensives. There were no significant differences in the genotype and allele frequencies between the two groups. Although the frequencies in each of these polymorph isms were not significantly different between normotensives and hypertensives, our results provide additional ethnic information for linkage analysis and associated studies of this disorder with cardiovascular disease.

The Distribution of Genetic Polymorphism in the ACE2 Gene in Korean Essential Hypertensives (한국인 본태성 고혈압 환자군에서 ACE2유전자에 존재하는 A1075G다형성의 분포에 관한 연구)

  • Jang Min Hee;Kang Byung Yong;Lee Jae Koo;Lee Kang Oh
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.4 s.51
    • /
    • pp.303-309
    • /
    • 2005
  • Essential hypertension has been considered as multifactorial disease resulted from the interaction of both environmental and genetic factors. The renin-angiotensin system (RAS) plays an important role in the regulation of blood pressure homeostasis. Recently, a homologue of angiotensin I converting enzyme, ACE2 has been focused on as a candidate gene of essential hypertension in the experiments using animal model and human being. In this study, we carried out an association study in order to clarify the relationship between the A 1075G polymorphism in the ACE2 gene and essential hypertension in Korean subjects. Because this polymorphism is located on human chromosome X, the statistical analysis for each gender was performed separately. There were no significant differences in allele distribution of the A 1075G polymorphism in the ACE2 gene between normotensives and hypertensives in the both gender groups, respectively. However, this polymorphism was significantly associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) values in only female groups (P< 0.05). Thus, these results may suggest the probable role of ACE2 gene in the inter-individual susceptibility of female group to blood pressure variability.

Characteristics of Hemolysin in Mosquitocidal Bacillus thuringiensis strain 21-2 (모기 살충성 Bacillus thuringiensis 21-2균주의 용혈성 내독소 단백질의 특성)

  • 김광현;김위종;김영희;김병우
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.3
    • /
    • pp.230-234
    • /
    • 2002
  • To describe characteristics of a hemolysin in mosquitocidal Bacillus thuringiensis subsp. gyangiensis strain 21-2, Escherichia coli HB101 was transformed with a gene encoding hemolysin in the strain 21-2. Transformant 47 con-tained 2.5 kb DNA was selected by ELISA, immunoblot and DNA electrophoresis. Transformant 47-5 was recon-structed after digestion of the 2.5 kb DNA with Hind m. Transformant 47-5 contained 1.8 kb DNA and expressed 23 kDa Protein which had mosquitocidal activity to Aedes aegypti. The 23 kDa Protein itself in vitro didn't show hemolytic activity on human erythrocytes, but the protein had the activity after proteinase K treatment.

Cadmium Altered Gene Expression Related to Zinc Homeostasis in the Mouse Brain (카드뮴이 마우스 뇌에서 아연의 항상성에 관여하는 유전자발현에 미치는 영향)

  • Park Jong-An;Yoe Eun-Young;Nam Sang-Hun;Jang Bong-Ki;Lee Jong-Wha;Kim Wan-Jong
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.4
    • /
    • pp.389-399
    • /
    • 2004
  • Metallothionein (MT), a small protein molecule which can bind or release metal ions, is involved in the regulation of cellular metal homeostasis. This study was investigated the accumulation of cadmium in blood, tissue (liver, kidney and brain), and the effect of cadmium on several key genes (MT-I, MT-II, ZnT-1) in zinc metabolism in the mouse. Mouses weighing 20∼25 g were randomly assigned to control and cadmium treated group (Cd group). Cd group was intraperitoneally injected with cadmium 2, 4, 8 mg/kg and control group was administerd with saline. Mouses of each group were sacrificed by decapitation 4 hours after the administration of cadmium. Cadmium contents in blood, liver, kidney and brain were increased by a dose-dependent manner. Accumulation of cadmium was mainly occurred in liver and kidney. Induction of MT-I and MT-II protein was increased, but ZnT-1 expression was decreased in a dose-dependent manner by the treatment of 2∼8 mg/kg cadmium. These results suggested that cadmium can be transported to brain and alter the expression of several key genes in zinc homeostasis.

Characterization and Expression of Chironomus riparius Alcohol Dehydrogenase Gene under Heavy Metal Stress (중금속 노출에 따른 리파리 깔다구에서의 ADH 유전자의 발현 및 특성)

  • Park, Ki-Yun;Kwak, Inn-Sil
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.2
    • /
    • pp.107-117
    • /
    • 2009
  • Metal pollution of aquatic ecosystems is a problem of economic and health importance. Information regarding molecular responses to metal exposure is sorely needed in order to identify potential biomarkers. To determine the effects of heavy metals on chironomids, the full-length cDNA of alcohol dehydrogenase (ADH3) from Chironomus riparius was determined through molecular cloning and rapid amplification of cDNA ends (RACE). The expression of ADH3 was analyzed under various cadmium and copper concentrations. A comparative and phylogenetic study among different orders of insects and vertebrates was carried out through analysis of sequence databases. The complete cDNA sequence of the ADH3 gene was 1134 bp in length. The sequence of C. riparius ADH3 shows a low degree of amino acid identity (around 70%) with homologous sequences in other insects. After exposure of C. riparius to various concentrations of copper, ADH3 gene expression significantly decreased within 1 hour. The ADH3 gene expression was also suppressed in C. riparius after cadmium exposure for 24 hour. However, the effect of cadmium on ADH3 gene expression was transient in C. riparius. The results show that the suppression of ADH3 gene by copper exposure could be used as a possible biomarker in aquatic environmental monitoring and imply differential toxicity to copper and cadmium in C. riparius larvae.

Myeloperoxidase Polymorphism and Vitamin C Levels during Pregnancy Affect Maternal Oxidative Stress and Their Neonatal Birth Weights (임산부의 Myeloperoxidase 유전자다형성과 혈중 비타민 C 수준에 따른 모체의 산화 스트레스와 출생체중)

  • Park Bohyun;Kim Young-Ju;Park Eun Ae;Lee Hwayoung;Ha Eun-Hee;Park Jongsoon;Kim Jeongyoun;Hong Yun-Chul;Park Hyesook
    • Toxicological Research
    • /
    • v.20 no.3
    • /
    • pp.187-193
    • /
    • 2004
  • This study aimed to determine the association of maternal oxidative stress and adverse pregnancy outcome with serum vitamin C concentration and a myeloperoxidase (MPO) genetic polymorphism during pregnancy. We investigated 450 pregnant women who visited Ewha Womans University Hospital for prenatal care during gestational weeks 24~28. During the second trimester, we measured serum vitamin C levels and urinary 8-hydroxyde-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) as an oxidative stress biomarker. We determined the presence of a maternal MPO polymorphism (G-to-A substitution at nucleotide 463) using a PCR-RFLP assay. We compared the level of oxidative stress and birth weight with the vitamin C concentration and the presence of the MPO polymorphism. The mean level of maternal oxidative stress tended to be higher and the birth weight lower for MPO type A/A than for types A/G and G/G. Vitamin C levels above the 75 percentiles were associated with reduced concentrations of urinary MDA and 8-OHdG but increased birth weight. Our data demonstrate that oxidative stress and neonatal birth weight are associated with the MPO genetic polymorphism, with the association modified by the maternal vita-min C levels.

Influences of CYP2E1 Gene Polymorphism on the Metabolism of Benzene (벤젠 대사에 있어서 CYP2E1유전자다형성의 영향)

  • 정효석;김기웅;장성근
    • Toxicological Research
    • /
    • v.18 no.4
    • /
    • pp.325-330
    • /
    • 2002
  • In this study, the biochemical role of genetic polymorphism in modulating urinary excretion of benzene metabolite as phenol level has been investigated in 90 workers exposed to benzene in the petroleum refinery plant of Korea. The mean concentration of volatile benzene in the refinery environment was 0.042 mg/㎥ (SD, 0.069) and that of urinary phenol was 7.42 mg/g creatinine (SD, 11.3). The frequencies of CYP2E1 genotypes, namely CYP2E1$^*1$/$^*1$, CYP2E1$^*1$/$^*2$ and CYP2E1$^*2$/$^*2$ were 2.2% (2 subjects), 6.7% (G subjects) and 91.1% (85 subjects), respectively, and allele frequencies for CYP2E1$^*1$ and CYP2E1$^*2$ were 0.06 and 0.94. The airborne benzene concentration was significantly related to the concentration of phenol in urine (r = 0.640, p < 0.01). The urinary phenol level was significantly correlated with CYP2E1$^*2$/$^*2$ (r = 0.590, p < 0.05). The various biological (i.e. age and liver function parameters) or lifestyle factors (i.e. medication, smoking, alcohol and coffee intake), also taken into account as potential confounders, did not influence the correlation found. These results suggested that CYP2E1 genotypes might play an important role in the metabolism of benzene.