Myeloperoxidase Polymorphism and Vitamin C Levels during Pregnancy Affect Maternal Oxidative Stress and Their Neonatal Birth Weights

임산부의 Myeloperoxidase 유전자다형성과 혈중 비타민 C 수준에 따른 모체의 산화 스트레스와 출생체중

  • 박보현 (이화여자대학교 의과대학 예방의학교실) ;
  • 김영주 (이화여자대학교 의과대학 산부인과학교실, 이화여자대학교 의과학연구소) ;
  • 박은애 (이화여자대학교 의과대학 소아과학교실, 이화여자대학교 의과학연구소) ;
  • 이화영 (이화여자대학교 의과대학 해부학교실, 이화여자대학교 의과학연구소) ;
  • 하은희 (이화여자대학교 의과대학 예방의학교실, 이화여자대학교 의과학연구소) ;
  • 박종순 (이화여자대학교 의과대학 산부인과학교실) ;
  • 김정연 (이화여자대학교 의과대학 예방의학교실) ;
  • 홍윤철 (서울대학교 의과대학 예방의학교실) ;
  • 박혜숙 (이화여자대학교 의과대학 예방의학교실, 이화여자대학교 의과학연구소)
  • Published : 2004.09.01

Abstract

This study aimed to determine the association of maternal oxidative stress and adverse pregnancy outcome with serum vitamin C concentration and a myeloperoxidase (MPO) genetic polymorphism during pregnancy. We investigated 450 pregnant women who visited Ewha Womans University Hospital for prenatal care during gestational weeks 24~28. During the second trimester, we measured serum vitamin C levels and urinary 8-hydroxyde-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) as an oxidative stress biomarker. We determined the presence of a maternal MPO polymorphism (G-to-A substitution at nucleotide 463) using a PCR-RFLP assay. We compared the level of oxidative stress and birth weight with the vitamin C concentration and the presence of the MPO polymorphism. The mean level of maternal oxidative stress tended to be higher and the birth weight lower for MPO type A/A than for types A/G and G/G. Vitamin C levels above the 75 percentiles were associated with reduced concentrations of urinary MDA and 8-OHdG but increased birth weight. Our data demonstrate that oxidative stress and neonatal birth weight are associated with the MPO genetic polymorphism, with the association modified by the maternal vita-min C levels.

Keywords

References

  1. Austin, G.E., Lam, L., Zaki, S.R., Chan, W.C., Hodge, T.,Hou, J., Swan, D. and Zhang. (1993): Regulatory DNA of 5' Flanking region of the myeloperoxidase gene in normal and leukemic bone marrow cells. Leukemia., 7, 1445-1450
  2. Bolisetty. S., Naidoo, D., Lui, K., Koh, T.H., Watson, D. and Whitehall, J. (2002): Antenatal supplementation of antioxidant vitamins to reduce the oxidative stress at delivery - a pilot study. Early Hum Dev., 67, 47-53
  3. Cascorbi, I., Henning, S., Brockmoller, J., Gephart, J., Meisel, C., Muller, J.M., Loddenkemper, R. and Roots, I. (2000): Substantially reduced risk of cancer of the aerodigestive tract in subjects with variant-463A of the myeloperoxidase gene. Cancer Res., 60, 644-649
  4. Dietrich, M., Block, G., Benowitz, N.L., Morrow, J.D., Hudes, M., Gacob, P 3rd., Norkus, E.P. and Packer, L. (2003): Vitamin C supplementation decreases oxidative stress biomarker f2-isoprostanes in plasma of nonsmokers exposed to environmental tobacco smoke. Nutr. Cancer., 45,176-184
  5. Dreisin, R.B. and Mostow, S.R. (1979): Sulfhydryl-mediated depression of ciliary activity: an adverse effect of acetylcysteine. J. Lab. Clin. Med., 93, 674-678
  6. Fraga, C.G., Motchnik, P.A., Shigenaga, M.K., Helbock, H.J., Jacob, R.A. and Ames, B.N. (1991): Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc. Natl. Acad. Sci. USA, 24, 11003-11006
  7. Galley, H.F., Davies, M.J. and Webster, N.R. (1996): Ascorbyl radical formation in patients with sepsis: effect of ascorbate loading. Free Radic. Biol. Med., 20, 139-143
  8. Gutteridge, J.M. (1986): Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett., 201, 291-295
  9. Halliwell, B., Gutteridge, J. and M, C. (1999): Free radicals in biology and medicine. Oxford University Press
  10. Herbert, V., Shaw S. and Jayatilleke, E. (1996): Vitamin Cdriven free radical generation from iron. J. Nutr., 126, 1213S-1220S
  11. Hong, YC., Lee, K.H., Yi, C.H., HA E.H. and David C.C. (2002): Genetic susceptibility of term pregnant women to oxidative damage. Toxicology Lett., 129, 255-262
  12. Jacob, R.A. and Burri, B.J. (1996): Oxidative damage and defense. Am. J. Clin. Nutr., 63, 985S-990S
  13. Kleinveld, H.A., Demacker, P.N. and Stalenhoef, A.F. (1992): Failure of N-acetylcysteine to reduce low-density lipoprotein oxidizability in healthy subjects. Eur. J. Clin. Pharmacol., 43, 639-642 https://doi.org/10.1007/BF02284964
  14. Mallet, W.G., Mosebrook, D.R. and Trush, M.A. (1991): Activation of (+-) trans-7,8 dihydroxy 7,8 dihydrobenzo(a)pyrene to diolepoxides by human polymorphonuclear leukocytes or myeloperoxidase. Carcinogenesis., 12, 521-524
  15. Matsubasa, T., Uchino, T., Karashima, S., Kondo, Y., Maruyama, K., Tanimura, M. and Endo, F. Oxidative stress in very low birth weight infants as measured by urinary 8-OHdG. Free Radical Res., 36, 189-193
  16. Matthew, B.S., Margaret, R.S., Sinmei, Z., George, L.D. and Xifeng, W.U. (2000): Genetic variants of myeloperoxidase and lung cancer risk. Carcinogenesis., 21, 1163-1166
  17. Nagra, R.M., Becher, B., Tourtellotte, W.W., Antel, J.P., Gold, D., Paladino, T., Smith, R.A., Nelson, J.R. and Reynolds, W.F. (1997): Immunohistochemical and genetic evidence of myeloperoxidase involvement in multiple sclerosis. J. Neuroimmunol., 78, 97-107 https://doi.org/10.1016/S0165-5728(97)00089-1
  18. Marchand, L., Seifried, A., Lum, A. and Wilkens, L.R. (2000): Association of the myeloperoxidase -463GA polymorphism with lung cancer risk. Cancer. Epidemiol. Biomarkers. Prev., 9, 181-184
  19. Lee, B.M., Lee, S.K. and Kim, H.S. (1998): Inhibition of oxidative DNA damage, 8-OHdG, and carbonyl contents in smokers treated with antioxidants (vitamin E, vitamin C, beta-carotene and red ginseng). Cancer Lett., 132, 219-227
  20. London, S.J., Lehman, T.A. and Taylor, J.A. (1997): Myeloperoxidase genetic polymorphism and lung cancer risk. Cancer Res., 57, 5001-5003
  21. Lopez, R.A., Tornwall, M.S., Henagan, J.M., Smith G.S. and Miller, T.A. (1991): N-acetyl-cysteine: protective agent or promoter of gastric damage. Proc. Soc. Exp. Biol. Med., 197, 273-278
  22. Pero, R.W., Sheng, V., Olsson, A., Bryngelsson, C. and LundPero, M. (1996): Hypochlorous acid/N-chloramines are naturally produced DNA repair inhibitors. Carcinogenesis., 17, 13-18
  23. Piedrafita, F.J., Molander, R.B., Vansan T.G., Orlova, E.A., Pfahl, M. and Reynolds, W.F. (1996): An Alu element in the myeloperoxidase promoter contains a composite SP1-thyroid hormone-retinoic acid response element. J. Biol. Chem., 271,14412-14420 https://doi.org/10.1074/jbc.271.24.14412
  24. Podmore, I.O., Griffiths, H.R., Herbert, K.E., Mistry, N., Mistry P. and Lunec, J. (1998): Vitamin C exhibits pro-oxidant properties. Nature, 392, 559
  25. Rehman, A., Collis, C.S., Vang, M., Kelly, M., Diplock, A.T., Halliwell, B. and Rice-Evans, C. (1998): The effects of iron and vitamin C co-supplementation on oxidative damage to DNA in healthy volunteers. Biochem. Biophys. Res. Commun., 246, 293-298
  26. Reynolds, W.F., Chang, E., Douer, D., Ball, E.D. and Kanda, V. (1997): An allelic association implicates myeloperoxidase in the etiology of acute promyelocytic leukemia. Blood., 90, 2730-2737
  27. Romert, L. and Jenssen, D., (1987): Mechanism of N-acetylcysteine (NAC) and other thiols as both positive and negative modifiers of MNNG-induced mutagenicity in V79 Chinese hamster cells. Carcinogenesis., 8, 1531-1535
  28. Schneider, M., Diemer, K., Engelhart, K., Zankl, H., Trotter, W.E. and Biesalski, H.K. (2001): Protective effects of vitamin C and E on the number of micronuclei in lymphocytes in smokers and their role in ascorbate free radical. formation in plasma. Free Radi. Res., 34, 209-219
  29. Scholl, T.O. and Stein, T.P., (2001): Oxidant damage to DNA and pregnancy outcome. The Journal of Maternal-Fetal Medicine, 10, 182-185
  30. Trush, M.A., Seed, G.L. and Densler, T.W. (1991): Oxidantdependent metabolic activation of polycyclic aromatic hydrocarbons by phorbol ester-stimulated human polymorphonuclear leukocytes: possible link between inflammation and cancer. Proc. Natl. Acad. Sci. USA, 82, 5194-5198
  31. Wang, Y. and Walsh S.W. (2001): Increased superoxide generation is associated with decreased superoxide dismutase activity and mRNA expression in placental trophoblast cells in pre-eclampsia. Placenta., 22, 206-212
  32. Winterbourn, C.C. (1981): Hydroxyl radical production in body fluids. Roles of metal ions, ascorbate and superoxide. Biochem. J., 198, 125-131
  33. Wisdom, S.J, Wilson, R., Mckillop, J. and Walker, J.J. (1991): Antioxidant systems in normal pregnancy and in pregnancy induced hypertension. Am. J. Obstet. Gyneco. I.,12, 1701-1704
  34. Witko- Sarsat, V., Allen, R.C., Paulais, M., Nguyen, A.T., Bessou, G., Lenoir, G. and Descamps-Latscha, B. (1996): Disturbed myeloperoxidase-dependent activity of neutrophils in cystic fibrosis homozygotes and heterozygotes, and its correction by amiloride. J. Immunol., 157, 2728-2735