중금속 노출에 따른 리파리 깔다구에서의 ADH 유전자의 발현 및 특성

Characterization and Expression of Chironomus riparius Alcohol Dehydrogenase Gene under Heavy Metal Stress

  • Park, Ki-Yun (Department of Fisheries and Ocean Science, Chonnam National University) ;
  • Kwak, Inn-Sil (Department of Fisheries and Ocean Science, Chonnam National University)
  • 발행 : 2009.06.30

초록

Metal pollution of aquatic ecosystems is a problem of economic and health importance. Information regarding molecular responses to metal exposure is sorely needed in order to identify potential biomarkers. To determine the effects of heavy metals on chironomids, the full-length cDNA of alcohol dehydrogenase (ADH3) from Chironomus riparius was determined through molecular cloning and rapid amplification of cDNA ends (RACE). The expression of ADH3 was analyzed under various cadmium and copper concentrations. A comparative and phylogenetic study among different orders of insects and vertebrates was carried out through analysis of sequence databases. The complete cDNA sequence of the ADH3 gene was 1134 bp in length. The sequence of C. riparius ADH3 shows a low degree of amino acid identity (around 70%) with homologous sequences in other insects. After exposure of C. riparius to various concentrations of copper, ADH3 gene expression significantly decreased within 1 hour. The ADH3 gene expression was also suppressed in C. riparius after cadmium exposure for 24 hour. However, the effect of cadmium on ADH3 gene expression was transient in C. riparius. The results show that the suppression of ADH3 gene by copper exposure could be used as a possible biomarker in aquatic environmental monitoring and imply differential toxicity to copper and cadmium in C. riparius larvae.

키워드

참고문헌

  1. Anderson RL. Chironomidae toxicity tests-biological background and procedures. In: Buikema, AL and Cairns J, (eds.). Aquatic Invertebrate Bioassays, American Society for Testing and Materials (ASTM), 1977; pp. 209
  2. Anderson RL, Walbridge CT and Fiandt JT. Survival and growth of Tanytarsus dissimilis (Chironomidae) exposed to copper, cadmium, zinc, and lead, Arch Environ Contam Toxicol 1980; 9: 329-335 https://doi.org/10.1007/BF01057412
  3. Aoki Y, Suzuki KT and Kubota K. Accumulation of cadmium and induction of its binding protein in the digestive tract of fleshfly (Sarcophaga peregrina) larvae, Comp Biochem Physiol 1984; 77: 279-282
  4. Balint T, Ferenczy J, Katai F, Kiss I, Kraczer L, Kufcsak O, Lang G, Polyhos C, Szabó I, Szegletes T and Nemcsók J. Similarities and differences between the massive eel (Anguilla Anguilla L.) devastations that occurred in lake Balaton in 1991 and 1995, Ecotoxicol Environ Saf 1997; 37: 17-23 https://doi.org/10.1006/eesa.1996.1509
  5. Besser JM, Brumbaugh WG, Ivey CD, Ingersoll CG and Moran PW. Biological and chemical characterization of metal bioavailability in sedments from Lake Roosevelt, Columbia River, Washington, USA, Arch Environ Contam Toxicol 2008; 54: 557-570 https://doi.org/10.1007/s00244-007-9074-5
  6. Bettinetti R, Cuccato D, Galassi S and Provini A. Toxicity of 4-nonylphenol in spiked sediment to three population of Chironomus riparius, Chemosphere 2002; 46: 201-207 https://doi.org/10.1016/S0045-6535(01)00114-X
  7. Brodsky LI, Drachev AL, Leontovich AM and Feranchuk SI. A novel method of multiple alignment of biopolymer sequences, Biosystems 1993; 30: 65-79 https://doi.org/10.1016/0303-2647(93)90063-I
  8. Cheng S. Heavy metal pollution in China: origin, pattern and control, Environ Sci Pollut Res Int 2003; 3: 192-198
  9. Choi J, Caquet T and Roche H. Multilevel effects of sublethal fenitrothion exposure in Chironomus riparius Mg. (Diptera, Chironomidae) larvae, Environ Toxicol Chem 2003; 21: 2725-2730
  10. Clements WH and Kiffney PM. Integrated laboratory and field approach for assessing impacts of heavy metals at the Arkansas River, Colorado, Environ Toxicol Chem 1994; 13: 397-404 https://doi.org/10.1002/etc.5620130306
  11. Crane M, Sildanchandra W, Kheir R and Callaghan A. Relationship between biomarker activity and developmental endpoints in Chironomus riparius Meigen exposed to an organophosphate insecticide, Ecotoxicol Environ Saf 2002; 53: 361-369 https://doi.org/10.1016/S0147-6513(02)00038-6
  12. Cranston PS. The chironomidae-The biology and ecology of non-bitting midges. Chapman & Hall, London, UK, 1995
  13. Danielsson O and Jornvall H. 'Enzymogenesis': Classical liver alcohol dehydrogenase origin from the glutathione dependent formaldehyde dehydrogenase line, Proc Natl Acad Sci USA 1992; 89: 9247-9251 https://doi.org/10.1073/pnas.89.19.9247
  14. Dasmahapatra AK, Doucet HL, Bhattacharyya C and Carvan M.J.3rd. Developmental expression of alcohol dehydrogenase (ADH3) in zebrafish (Danio rerio), Biochem Biophys Res Commun 2001; 286: 1082-1086 https://doi.org/10.1006/bbrc.2001.5511
  15. Duester G, Farres J, Felder MR, Holmes RS, Hoog JO, Pares X, Plapp BV, Yin SJ and Jornvall H. Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family, Biochem Pharmacol 1999; 58: 389-395 https://doi.org/10.1016/S0006-2952(99)00065-9
  16. Eimers MC, Evans RD and Welboum PM. Partitioning and bioaccumulation of cadmium in artificial sediment systems: application of a stable isotope tracer technique, Chemosphere 2002; 46: 543-551 https://doi.org/10.1016/S0045-6535(01)00156-4
  17. Eklund H, Müller-Wille P, Horjales E, Futer O, Holmquist B, Vallee BL, Höög JO, Kaiser R and Jörnvall H. Comparison of three classes of human liver alcohol dehydronase, Emphasis on different substrate binding pockets, Eur J Biochem 1990; 193: 303-310 https://doi.org/10.1111/j.1432-1033.1990.tb19337.x
  18. Elendt BP. Selenium deficiency in Crustacea; An ultrastructural approach to antennal damage in Daphnia magna Straus, Protoplasma 1990; 154: 25-33 https://doi.org/10.1007/BF01349532
  19. Funkenstein B and Jakowlew SB. Molecular cloning of fish alcohol dehydrogenase, Gene 1996; 174: 159-164
  20. Henson MC and Chedrese PJ. Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction, Exp Biol Med 2004; 229: 383-392 https://doi.org/10.1177/153537020422900506
  21. Hoog JO, Eklund H and Jörnvall H. A single-residue exchange gives human recombinant beta beta alcohol dehydrogenase gamma gamma isozyme properties, Eur J Biochem 1992; 205: 519-526 https://doi.org/10.1111/j.1432-1033.1992.tb16808.x
  22. Hurley TD, Bosron WF, Stone CL and Amzel LM. Structures of three human beta alcohol dehydrogenase variants, Correlations with their functional differences, J Mol Biol 1994; 239: 415-429 https://doi.org/10.1006/jmbi.1994.1382
  23. Ibrahim H, Kheir R, Helmi S, Lewis J and Crane M. Effects of rganophosphorus, carbamate, pyrethroid and organochlorine pesticides, and a heavy metal on survival and cholinesterase activity of Chironomus riparius Meigen, Bull Environ Contam Toxicol 1998; 60: 448-455 https://doi.org/10.1007/s001289900646
  24. Igwilo IO, Afonne OJ, Maduabuchi UJ and Orisakwe OE. Toxicological study of the Anam River in Otuocha, Anambra State, Nigeria, Arch Environ Occup Health 2006; 61: 205-208 https://doi.org/10.3200/AEOH.61.5.205-208
  25. Janssens de Bisthoven L, Postma J, Vermeulen A, Goemans G and Ollevier F. Morphological deformities in Chironomus riparius meigen larvae after exposure to cadmium over several generations, Water Air Soil Pollut 2001; 129: 167-179 https://doi.org/10.1023/A:1010367524314
  26. Janssens de Bisthoven L, Vermeulen A and Ollevier F. Experimental induction of morphological deformities in Chiromonus riparius larvae by chronic exposure to copper and lead, Arch Environ Contam Toxicol 1998; 35: 249-256 https://doi.org/10.1007/s002449900373
  27. Kahl MD, Makynen EA, Kosian PA and Ankley GT. Toxicity of 4-nonylphenol in a life-cycle test with the midge Chironomus tentans, Ecotoxicol Environ Saf 1997; 38: 155-160 https://doi.org/10.1006/eesa.1997.1572
  28. Korenekova B, Skalicka M and Nad P. Cadmium exposure of cattle after long-term emission from polluted area, Trace Elem Electrolytes 2002; 19: 97-99
  29. Kwak IS and Lee W. Mouthpart deformity and developmental retardation exposure of Chironomus plumosus (Diptera: Chiromonidae) to tebufenozide, Bull Environ Contam Toxicol 2005; 75: 859-865 https://doi.org/10.1007/s00128-005-0829-2
  30. Landrum PF and Robbins JA. Bioavailability of sediment associated contaminants to benthic invertebrates. In: Baudo R, Giesy J, Muntau H (eds.), Sediments: chemistry and toxicity of in-place pollutants, Lewis Publishers, Inc., Ann Arbor, MI 1990; pp. 237-263
  31. Lemoine S and Laulier M. Potential use of the levels of the mRNA of a specific metallothionein isoform (MT-20) in mussel (Mytilus edulis) as a biomarker of cadmium contamination, Mar Pollut Bull 2003; 46: 1450-1455 https://doi.org/10.1016/S0025-326X(03)00283-2
  32. Lemoine S, Bigot Y, Sellos D, Cosson RP and Laulier M. Metallothionein isoforms in Mytilus edulis (Mollusca, Bivalvia): complementary DNA characterization and quantification of expression in different organs after exposure to cadmium, zinc, and cooper, Mar Biotechnol 2000; 2: 195-203
  33. Lukac N, Massanyi P, Toman R and Trandzik J. Effect of cadmium on spermatozoa motility, Sovremena poljoprivreda 2003; 3-4: 215-217
  34. Maroni G, Lastowski-Perry D, Otto E and Watson D. Effects of heavy metals on Drosophila larvae and a metallothionein cDNA, Environ Health Perspect 1986; 65: 108-116
  35. Martinez EA, Moore BC, Schaumloffel J and Dasgupta N. Induction of morphological deformities in Chironomus tentans exposed to zinc- and lead-spiked sediments, Environ Toxicol Chem 2001; 20: 2475-2481 https://doi.org/10.1002/etc.5620201112
  36. Martinez EA, Moore BC, Schaumloffrl J and Dasgupta N. Morphological abnormalities in Chironomus tentans exposed to cadmium-and copper-spiked sediments, Ecotoxicol Environ Saf 2003; 55: 204-212 https://doi.org/10.1016/S0147-6513(02)00136-7
  37. Massanyi P, Lukac N and Trandzik J. In vitro inhibition of the motility of bovine spermatozoa by cadmium chloride, J Environ Sci Health Part A 1996; 31: 52-55
  38. Mattingly KS, Beaty BJ, Mackie RS, McGaw M, Carlson JO and Raymskeller A. Molecular cloning and characterization of a metal responsive Chironomus tentans alpha tubulin cDNA, Aquat Toxicol 2001; 54: 249-260 https://doi.org/10.1016/S0166-445X(00)00181-8
  39. Matthew MW and David P. Selection of an appropriate life cycle stage of Chironomus riparius meigen for use in chronic sediment toxicity testing, Chemoshere 1998; 36: 1405-1413 https://doi.org/10.1016/S0045-6535(97)10041-8
  40. Matthew MW, David P and Kathleen C. Chronic exposure to 17aethinylestradiol and bisphenol A effects on development and reproduction in the freshwater invertebrate Chironomus riparius (Diphtera: Chironomidae), Aquat Toxicol 2001; 55: 113-124 https://doi.org/10.1016/S0166-445X(01)00148-5
  41. Milani D, Reynoldson TB, Borgmann U and Kolasa J. The relative sensitivity of four benthic invertebrates to metals in spiked-sediment exposures and application to contaminated field sediment, Environ Toxicol Chem 2003; 22: 845-854 https://doi.org/10.1002/etc.5620220424
  42. Muntau H and Baudo R. Sources of cadmium, its distribution and turnover in the freshwater environment, IARC Sci Publ 1992; 118: 133-148
  43. Nowak C, Jost D, Vogt C, Oetken M, Schwenk K and Oehlmann J. Consequences of inbreeding and reduced genetic variation on tolerance to cadmium stress in the midge Chironomus riparius, Aquat Toxicol 2007; 85: 278-284 https://doi.org/10.1016/j.aquatox.2007.04.015
  44. Orlando C, Pinzani P and Pazzagli M. Developments in quantitative PCR, Clin Chem Lab Med 1998; 36: 255-269 https://doi.org/10.1515/CCLM.1998.045
  45. Ozcan S, Yildirim V, Kaya L, Albrecht D, Becher D, Hecker M and Ozcengiz G. Phanerochaete chrysosporium soluble proteome as a prelude for the analysis of heavy metal stress response, Proteomics 2007; 7: 1249-1260 https://doi.org/10.1002/pmic.200600526
  46. Pery ARR, Mons R, Flammarion P, Lagadic L and Garric J. A modeling approach to link food availability, growth, emergence, and reproduction for the midge Chironomus riparius, Environ Toxicol Chem 2002; 21: 2507-2513 https://doi.org/10.1002/etc.5620211133
  47. Rebelo MF, Pfeiffer W, Da Silva H and Morales MO. Cloning and detection of metallothionein mRNA by RT-PCR in mangrove oyster (Crassostrea rhizophorae), Aquat Toxicol 2003; 64: 359-362 https://doi.org/10.1016/S0166-445X(03)00059-6
  48. Reynoldson TB. Interactions between sediment contaminants and benthic organisms, Hydrobiologia 1987; 149: 53-66 https://doi.org/10.1007/BF00048646
  49. Rojik I, Nemcs'ok J and Boross L. Morphological and biochemical studies on liver, kidney and gill of fishes affected by pesticides, Acta Biol Hun 1983; 34: 81-92
  50. Skalicka M, Korenekova B and Nad P. Copper in livestock from polluted area, Bull Environ Contam Toxicol 2005; 74: 740-744 https://doi.org/10.1007/s00128-005-0644-9
  51. Streloke M and Kopp H. Long-term toxicity test with Chironomus riparius: development and validation of a new test system, Mitt. A. D. Biol. Bundesanst. 315, Blackwell Wissenschaftsverlag, Berlin/Vienna, 1995
  52. Tessier A and Campbell PGC. Partitioning of trace metals in sediments: relationships with bioavailability, Hydrobiologia 1987; 149: 43-52 https://doi.org/10.1007/BF00048645
  53. Thompson JD, Higgins DG and Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment throught sequence weighting, positionsspecific gap penalties and weight matrix choice, Nucl Acids Res 1994; 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  54. Tollett VD, Benvenutti EL, Deer LA and Rice TM. Differential toxicity to Cd, Pb, and Cu in dragonfly larvae (Insecta: Odonata), Arch Environ Contam Toxicol 2008; Apr. 18 Epub ahead of print https://doi.org/10.1007/s00244-008-9170-1
  55. Tom M, Chen N, Segev M, Herut B and Rinkevich B. Quantifying fish metallothionein transcript by real time PCR for its utilization as an environmental biomarker, Mar Pollut Bull 2004; 48: 705-710 https://doi.org/10.1016/j.marpolbul.2003.10.013
  56. To'th L, Juha'sz M, Varga T, Csikkel-Szolnoki A and Nemcso'k J. Some effect of $CuSO_4$ on carp, J Environ Sci Health B 1996; 31: 627-635 https://doi.org/10.1080/03601239609373029
  57. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A and Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaginh of multiple internal control genes, Genome Biol 2002; 3: research 0034
  58. Viarengo A. Heavy metals in marine invertebrates, mechanisms of regulation and toxicity at cell level, Aqu Sci 1989; 1: 295-317
  59. Viarengo A, Palermo S, Zanicchi G, Capelli R, Vaissiere R and Orunesu M. Role of metallothioneins in Cu and Cd accumulation and elimination in the gill and digestive gland cells of Mytilus galloprovincialis Lam, Mar Environ Res 1985; 1: 23-36
  60. Wan L, Wang N, Li Q, Sun B, Zhou Z, Xue K, Ma Z, Tian J and Song L. Distribution of dissolved metals in seawater of Jinzhou Bay, China, Environ Toxicol Chem 2008; 27: 43-48 https://doi.org/10.1897/07-155.1
  61. Wang G and Fowler BA. Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic, Toxicol Appl Pharmacol 2008; Jan. 32 Epub ahead of print https://doi.org/10.1016/j.taap.2008.01.017
  62. Won EJ, Raisuddin S and Shin KH. Evaluation of induction of metallothionein-like proteins (MTLPs) in the polychaetes for biomonitoring of heavy metal pollution in marine sediments, Mar Pollut Bull 2008; Apr. 4 Epub ahead of print https://doi.org/10.1016/j.marpolbul.2008.02.025