• Title/Summary/Keyword: 유전자가위

Search Result 10, Processing Time 0.02 seconds

A Study on How Governance of Genetic Scissors CRISPR-Cas9 for Research on Embryos Can Encourage a Researcher to Have a Sense of Responsibility - Focus on the Bioethics and Safety Act Article 47 - (유전자가위 CRISPR-Cas9을 이용한 인간 배아 연구에 있어서 연구자의 책임의식 고양을 위한 거버넌스 -개정 생명윤리 및 안전에 관한 법률 제47조를 중심으로-)

  • Kim, Minsung
    • The Korean Society of Law and Medicine
    • /
    • v.23 no.1
    • /
    • pp.121-148
    • /
    • 2022
  • CRISPR-Cas9 is one of the gene-editing technologies that infinite potential. It may provide human beings with many benefits or cause unanticipated challenges. The governance as standards setting or regulation of gene-editing technologies can contribute to keeping a balance between scientific value and ethical commitments. Guaranteeing public participation provides an additional opportunity to think about ethical and moral considerations: For whose benefit the internationally discussed governance of gene-editing technologies is directed at? There is a doubt regarding whether the governance justifies scientific researchers' gene-editing research. Suppose that governance promotes the advancement of CRISPR-Cas9, it should also encourage greater research responsibility. If not, there may be tragedies brought about by the misconduct of researchers. Thus, the essential matter on the governance for the research of CRISPR-Cas9 is the researchers' responsibility.

Targeted Gene Knockout in Chickens Mediated by TALENs (연구 - 유전자 가위 기법을 활용한 오브알부민 생산 유전자를 제거한 유전자 변형 닭 생산)

  • Han, Jae-Yong;Park, Tae-Seop
    • KOREAN POULTRY JOURNAL
    • /
    • v.46 no.10
    • /
    • pp.132-133
    • /
    • 2014
  • 생식선 줄기세포 원천기술을 이용한 형질전환 조류 생산 시스템과 고효율의 유전자적 중 기술인 유전자가위법(TALEN)을 도입함으로써 기초연구 및 단기간내 새로운 가금품종 개발이 가능하게 되었다. 또한, 신약개발 및 치료물질 대량생산을 위한 형질전환가금품종 개발에 응용될 수도 있어 축산과 더불어 의약, 약학 등 매우 다양한 분야에서 가금의 활용 범위를 넓힐 수 있을것으로 기대된다. 개발된 기술은 계란성분 조절을 통한 기능성 식품 및 단백질-신약을 포함한 신물질 생산을 목적으로 하는 지식기반 생명산업의 획기적인 발전을 유도할 수 있다. 이에 유전자 가위 기법을 활용한 오브알부민 생산 유전자를 제거한 유전자 변형 닭 생산에 관한 주요내용을 소개코자 한다.

Biogenesis of Lysosome-related Organelle Mutant Silkworms by Direct Injection of a Cas9 Protein-guided RNA Complex into Bombyx mori Embryos (Cas9 단백질/ 가이드 RNA 복합체를 이용한 누에 BmBLOS 유전자 편집)

  • Kim, Kee Young;Yu, Jeong Hee;Kim, Su-Bae;Kim, Seong-Wan;Kim, Seong-Ryul;Choi, Kwang-Ho;Kim, Jong Gil;Park, Jong Woo
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.537-544
    • /
    • 2019
  • Genome editing technology employing gene scissors has generated interest in molecular breeding in various fields, and the development of the third-generation gene scissors of the clustered, regularly interspaced short palindromic repeat (CRISPR) system has accelerated the field of molecular breeding through genome editing. In this study, we analyzed the possibility of silkworm molecular breeding using gene scissors by genomic and phenotypic analysis after editing the biogenesis of lysosome-related organelles (BmBLOS) gene of Bakokjam using the CRISPR/Cas9 system. Three types of guide RNAs (gRNA) were synthesized based on the BmBLOS gene sequence of Bakokjam. Complexes of the prepared gRNA and Cas9 protein were formed and introduced into Bombyx mori BM-N cells by electroporation. Analysis of the gene editing efficiency by T7 endonuclease I analysis revealed that the B4N gRNA showed the best efficiency. The silkworm genome was edited by microinjecting the Cas9/B4N gRNA complex into silkworm early embryos and raising the silkworms after hatching. The hatching rate was as low as 18%, but the incidence of mutation was over 40%. In addition, phenotypic changes were observed in about 70% of the G0 generation silkworms. Sequence analysis showed that the BmBLOS gene appeared to be a heterozygote carrying the wild-type and mutation in most individuals, and the genotype of the BmBLOS gene was also different in all individuals. These results suggest that although the possibility of silkworm molecular breeding using the CRISPR/Cas9 system would be very high, continued research on breeding and screening methods will be necessary to improve gene editing efficiency and to obtain homozygotes.

Artificial Mutation for Silkworm Molecular Breeding Using Gene Scissors (유전자 가위의 이용과 누에 분자 육종을 위한 인위적 돌연변이 유발)

  • Hong, Jeong Won;Jeong, Chan Young;Yu, Jeong Hee;Kim, Su-Bae;Kang, Sang Kuk;Kim, Seong-Wan;Kim, Nam-Suk;Kim, Kee Young;Park, Jong Woo
    • Journal of Life Science
    • /
    • v.30 no.8
    • /
    • pp.701-707
    • /
    • 2020
  • Gene editing technology using the clustered regularly interspaced short palindromic repeat (CRISPR) and the CRISPR associated protein (Cas)9 has been highly anticipated in developing breeding techniques. In this study, we discuss gene scissors as a tool for silkworm molecular breeding through analysis of Bombyx mori Kynurenine 3-Monooxygenase (BmKMO) gene editing using the CRISPR/Cas9 system and analysis of generational transmission through mutagenesis and selective crossing. The nucleotide sequence of the BmKMO gene was analyzed, and three guide RNAs (gRNAs) were prepared. Each synthesized gRNA was combined with Cas9 protein and then analyzed by T7 endonuclease I after introduction into the BM-N silkworm cell line. To edit the silkworm gene, K1P gRNA and Cas9 complexes were subsequently microinjected into the silkworm embryos; the hatching rate was 18% and the incidence of mutation was 60%. The gene mutation was verified in the heterozygous G0 generation, but no phenotypic change was observed. In homozygotes generated by self-crossing, a mutant phenotype was observed. These results suggest that silkworm molecular breeding using the CRISPR/Cas9 system is possible and could be an effective way of shortening the time required.

Chicken FMRP Translational Regulator 1 (FMR1) Promotes Early Avian Influenza Virus Transcription without Affecting Viral Progeny Production in DF1 Cells

  • Woo, Seung Je;Park, Young Hyun;Han, Jae Yong
    • Korean Journal of Poultry Science
    • /
    • v.48 no.2
    • /
    • pp.81-90
    • /
    • 2021
  • Avian influenza viruses (AIVs) must utilize host cellular factors to complete their life cycle, and fragile X mental retardation protein (FMRP) has been reported to be a host factor promoting AIV ribonucleoprotein (vRNP) assembly and exports vRNP from the nucleus to the cytoplasm. The functional role of chicken FMRP translational regulator 1 (cFMR1) as a host factor of AIV is, however, poorly understood. In this study, we targeted the cFMR1 gene in DF1 cells using clustered regularly interspaced short palindromic repeats/Cas9-mediated genome editing to examine the functional role of cFMR1 as a host factor of AIV. We found that cFMR1 stimulated viral gene transcription during early stages of the viruses' life cycle and did not affect viral progeny production and viral polymerase activity in DF1 cells 24 hours post infection. cFMR1 overexpression did not exert significant effects on virus production, compared to the control. Therefore, unlike in mammalian systems (e.g., humans or mice), cFMR1 did not play a pivotal role in AIV but only seemed to stimulate viral proliferation during early stages of the viral life cycle. These results imply that the interplay between host factors and AIV differs between mammals and avian species, and such differences should be considered when developing anti-viral drugs for birds or establishing AIV-resistant bird models.

Optimization of protoplast isolation and PEG-mediated transformation in Agaricus bisporus (양송이 원형질체 분리와 PEG 형질전환법의 최적화)

  • Kim, Minseek;Jang, Kab-yeul;Lee, Yun-Sang;Oh, Min Ji;Im, Ji-Hoon;Oh, Youn-Lee
    • Journal of Mushroom
    • /
    • v.19 no.3
    • /
    • pp.256-259
    • /
    • 2021
  • Currently, button mushroom, Agaricus bisporus is one of the most consumed mushroom in the world. However, despite of its importance in food market, molecular genetic modification method for breeding of A. bisporus is not well established. In this study, we optimized yield of A. bisporus protoplast with Lysing enzyme, Chimax-N and cellulase. With this composition, 1.0 × 108/mL of protoplasts were obtained reliably. PEG-mediated transformation with spermidine showed almost 100-fold higher yield than non-spermidine method.

Delivery of Protein into Microalgae by the Digital Electroporation (디지털 전기천공을 이용한 미세조류 내 단백질 전달 연구)

  • Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.79-84
    • /
    • 2018
  • In the present study, we performed electroporation to deliver protein into microalgae using previously developed digital electroporation system. Green fluorescence protein was successfully delivered into a live microalgae cell nucleus without cell wall removal. By investigating the effects of applied voltage on the protein delivery efficiency, optimal electroporation electric field condition was found (960 V/cm). We also investigated the delivery of Yo-Pro-1 into cell to examine the size effects of delivered materials and found that there is little size effects on the optimal condition. Finally, the implications of the present results and future work are discussed.

Optimization of Protoplast Isolation and Ribonucleoprotein/Nanoparticle Complex Formation in Lentinula edodes (표고버섯의 원형질체 분리 최적화와 RNPs/나노파티클 복합체 형성)

  • Kim, Minseek;Ryu, Hojin;Oh, Min Ji;Im, Ji-Hoon;Lee, Jong-Won;Oh, Youn-Lee
    • Journal of Mushroom
    • /
    • v.20 no.3
    • /
    • pp.178-182
    • /
    • 2022
  • Despite the long history of mushroom use, studies examining the genetic function of mushrooms and the development of new varieties via bio-molecular methods are significantly lacking compared to those examining other organisms. However, owing to recent developments, attempts have been made to use a novel gene-editing technique involving CRISPR/Cas9 technology and genetic scissors in mushroom studies. In particular, research is actively being conducted to utilize ribonucleoprotein particles (RNPs) that can be genetically edited with high efficiency without foreign gene insertion for ease of selection. However, RNPs are too large for Cas9 protein to pass through the cell membrane of the protoplasmic reticulum. Furthermore, guide RNA is unstable and can be easily decomposed, which remarkably affects gene editing efficiency. In this study, nanoparticles were used to mitigate the shortcomings of RNP-based gene editing techniques and to obtain transformants stably. We used Lentinula edodes (shiitake mushroom) Sanjo705-13 monokaryon strain, which has been successfully used in previous genome editing experiments. To identify a suitable osmotic buffer for the isolation of protoplast, 0.6 M and 1.2 M sucrose, mannitol, sorbitol, and KCl were treated, respectively. In addition, with various nanoparticle-forming materials, experiments were conducted to confirm genome editing efficiency via the formation of nanoparticles with calcium phosphate (CaP), which can be bound to Cas9 protein without any additional amino acid modification. RNPs/NP complex was successfully formed and protected nuclease activity with nucleotide sequence specificity.

The 4th.industrial revolution and Korean university's role change (4차산업혁명과 한국대학의 역할 변화)

  • Park, Sang-Kyu
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.1
    • /
    • pp.235-242
    • /
    • 2018
  • The interest about 4th Industrial Revolution was impressively increased from newspapers, iindustry, government and academic sectors. Especially AI what could be felt by the skin of many peoples, already overpassed the ability of the human's even in creative areas. Namely, now many people start fo feel that the effect of the revolution is just infront of themselves. There were several issues in this trend, the ability of deep learning by machine, the identity of the human, the change of job environment and the concern about the social change etc. Recently many studies have been made about the 4th industrial revolution in many fields like as AI(artificial intelligence), CRISPR, big data and driverless car etc. As many positive effects and pessimistic effects are existed at the same time and many preventing actions are being suggested recently, these opinions will be compared and analyzed and better solutions will be found eventually. Several educational, political, scientific, social and ethical effects and solutions were studied and suggested in this study. Clear implication from the study is that the world we will live from now on is changing faster than ever in the social, industrial, political and educational environment. If it will reform the social systems according to those changes, a society (nation or government) will grasp the chance of its development or take-off, otherwise, it will consume the resources ineffectively and lose the competition as a whole society. But the method of that reform is not that apparent in many aspects as the revolution is progressing currently and its definition should be made whether in industrial or scientific aspect. The person or nation who will define it will have the advantage of leading the future of that business or society.

In Vitro Tissue Culture Frequency and Transformation of Various Cultivars of Soybean (Glycine max (L.) Merr.) (다양한 콩 자원들의 기내 조직배양 효율 및 형질전환)

  • Seo, Mi-Suk;Cho, Chuloh;Jeong, Namhee;Sung, Soon-Kee;Choi, Man-Soo;Jin, Mina;Kim, Dool-Yi
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.278-286
    • /
    • 2021
  • Efficient in vitro regeneration system is essential for the successful crop breeding of soybean (Glycine max (L.) Merr.) using the new biotechnology. The genotype of donor plants strongly influences the establishment of tissue culture system. Therefore, the screening of genotypes with excellent tissue culture ability is very important for soybean genetic improvement. In this study, we report the tissue culture efficiency of 21 soybean cultivars belong to Korean soybean core-collection and two foreign cultivars (Jack and Maverick). The Kwangan, Anpyeong and Seonam are share close genetic relationship in 21 cultivars and these three cultivars were observed the high frequency of germination and regeneration. Furthermore, the high tissue culture abilities were also observed in the Williams 82 used in reference genome sequencing and the two foreign cultivars. The transformation of pBAtc:tRNA with bar gene was performed by Agrobacterium tumefaciens in the cultivars with high tissue culture ability. Transformation of the bar gene was identified by PCR analysis in Kwangan, Pungwon, Seonam, and Maverick. Our results provide useful information for the breeding of various soybean cultivars by plant biotechnology such as, genome editing.