Browse > Article
http://dx.doi.org/10.7732/kjpr.2021.34.4.278

In Vitro Tissue Culture Frequency and Transformation of Various Cultivars of Soybean (Glycine max (L.) Merr.)  

Seo, Mi-Suk (Crop Foundation Research Division, National Institute of Crop Science)
Cho, Chuloh (Crop Foundation Research Division, National Institute of Crop Science)
Jeong, Namhee (Fruit Research Division, National Institute of Horticultural and Herbal Science)
Sung, Soon-Kee (Crop Seed R&D Team, Farmhannong Co., Ltd.)
Choi, Man-Soo (Crop Foundation Research Division, National Institute of Crop Science)
Jin, Mina (Crop Foundation Research Division, National Institute of Crop Science)
Kim, Dool-Yi (Crop Foundation Research Division, National Institute of Crop Science)
Publication Information
Korean Journal of Plant Resources / v.34, no.4, 2021 , pp. 278-286 More about this Journal
Abstract
Efficient in vitro regeneration system is essential for the successful crop breeding of soybean (Glycine max (L.) Merr.) using the new biotechnology. The genotype of donor plants strongly influences the establishment of tissue culture system. Therefore, the screening of genotypes with excellent tissue culture ability is very important for soybean genetic improvement. In this study, we report the tissue culture efficiency of 21 soybean cultivars belong to Korean soybean core-collection and two foreign cultivars (Jack and Maverick). The Kwangan, Anpyeong and Seonam are share close genetic relationship in 21 cultivars and these three cultivars were observed the high frequency of germination and regeneration. Furthermore, the high tissue culture abilities were also observed in the Williams 82 used in reference genome sequencing and the two foreign cultivars. The transformation of pBAtc:tRNA with bar gene was performed by Agrobacterium tumefaciens in the cultivars with high tissue culture ability. Transformation of the bar gene was identified by PCR analysis in Kwangan, Pungwon, Seonam, and Maverick. Our results provide useful information for the breeding of various soybean cultivars by plant biotechnology such as, genome editing.
Keywords
bar gene; Cultivar; Soybean; Tissue culture; Transformation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kim, W.S. and H.B. Krishnan. 2004. Expression of an 11kDa methionine-rich delta-zein in transgenic soybean results in the formation of two types of novel protein bodies in transitional cells situated between the vascular tissue and storage parenchyma cells. Plant Biotech. J. 2:199-210.   DOI
2 Kim, Y.H., H.M. Park. M.S. Choi, S.I. Sohn, D.B. Shin and J.Y. Lee. 2008. Efficient transformation method of soybean using meristematic tissues of germinating seeds. Korean J. Breed. Sci. 40(3):278-285 (in Korean).
3 Kita, Y., K. Nishizawa, M. Takahashi, M. Kitayama and M. Ishimoto. 2007. Genetic improvement of the somatic embryogenesis and regeneration in soybean and transformation of the improved breeding lines. Plant Cell Rep. 26:439-447.   DOI
4 Li, S., Y. Cong, Y. Liu, T. Wang, Q. Shuai, N. Chen., J. Gai and Y. Li. 2017. Optimization of Agrobacterium-mediated transformation in soybean. Frontiers in Plant Sci. 8:246.   DOI
5 Ono, Y., Y. Takahata and N. Kaizuma. 1994. Effect of genotype on shoot regeneration from cotyledonary explants of rapeseed (Brassica Napus L). Plant Cell Rep. 14:13-17.   DOI
6 Paz, M.M., J.C. Martinez, A.B. Kalvig, T.M. Fonger and K. Wang. 2006. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep. 25(3):206-213.   DOI
7 Raza, G., M.B. Singh and P.L. Bhalla. 2017. In vitro plant regeneration from commercial cultivars of soybean. BioMed Res. Int. 2017:7379693.   DOI
8 Yang, C., T.J. Zhao, D.Y. Yu and J.Y. Gai. 2011. Mapping QTLs for tissue culture response in soybean (Glycine max (L.) Merr). Mol. Cells 32:337-342.   DOI
9 Singh, R.J. and T. Hymowitz. 1999. Soybean genetic resources and crop improvement. Genome 42:605-616.   DOI
10 Vagadia, B.H., S.K. Vanga and V. Raghavan. 2017. Inactivation methods of soybean trypsin inhibitor-a review. Trends Food Sci. Technol. 64:115-125.   DOI
11 Zeng, P., D.A. Vadnais, Z. Zhang and J.C. Polacco. 2004. Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill]. Plant Cell Rep. 22:478-482.   DOI
12 Chun, J.B., M. Jin, N. Jeong, C. Cho, M.S. Seo, M.S. Choi, D.Y. Kim, H.B. Sohn and Y.H. Kim. 2019. Genetic identification and phylogenic analysis of new varieties and 149 Korean cultivars using 27 InDel markers selected from dense variation blocks in soybean (Glycine max (L.) Merrill). Korean J. Plant Res. 32(5):519-542 (in Korean).
13 Sato, S., A. Xing, X. Ye, B. Schweiger, A. Kinney, G. Graef and T. Clemente. 2004. Production of γ-linolenic acid and stearidonic acid in seeds of marker-free transgenic soybean. Crop. Sci. 44:646-652.   DOI
14 Kim, H.J., H.S. Cho, J.H. Park, K.J. Kim, D.H. Lee and Y.S. Chung. 2017. Overexpression of a chromatin architecture controlling ATPG7 has positive effect on yield components in transgenic soybean. Plant Breed. Biotech. 5(3):237-242.   DOI
15 Melo, B.P., I.T. Lourenco-Tessutti, C.V. Morgante, N.C. Santos, L.B. Pinheiro, C.B.J. Lins, M.C.M. Silva, L.L.P. Macedo, E.P.B. Fontes and M.F. Grossi-de-Sa. 2020. Soybean embryonic axis transformation: combining biolistic and Agrobacterium-mediated protocols to overcome typical complications of in vitro plant regeneration. Frontiers in Plant Sci. 11:1228.   DOI
16 Zhao, Q., Y. Du, H. Wang, H.J. Rogers, C. Yu, W. Liu, M. Zhao and F. Xie. 2019. 5-azacytiding promotes shoot regeneration during Agrobacterium-mediated soybean transformation. Plant Physiol. Biochem. 141:40-50.   DOI
17 Zhang, W. and R. Wu. 1998. Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. Theor. Appl. Genet. 76:835-840.   DOI
18 Blanca, J., C. Esteras, P. Ziarsolo, D. Perez, V.F.N. Pedrosa, C. Collado, R.R.D. Pablos, A. Ballester, C. Roig, J. Canizares and B. Pico. 2012. Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics 13:280.   DOI
19 Cai, Y., L. Chen, X. Liu, C. Guo, S., Sun, C. Wu, B. Jiang, T. Han and W. Hou. 2018. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotech. J. 16:176-185.   DOI
20 Cho, S.W., T.S. Kim, S.J. Kwon, S.K. Roy, C.W. Lee, H.S. Kim and S.H. Woo. 2015. Effect of pre-germination by treatment of soaking on germination of soybean. Korean J. Crop Sci. 60(1)123-137 (in Korean).   DOI
21 Jeon, E.H. and Y.S. Chung. 2003. Development of genetic transformation method of Korean soybean. J. Plant Biotechnol. 36:344-351.   DOI
22 Eckert, H., B.L. Vallee, B.J. Schweiger, A.J. Kinney, E.B. Cahoon and T. Clemente. 2006. Co-expression of the borage Δ6 desaturase and the Arabidopsis Δ15 desaturase results in high accumulation of steridonic acid in the seeds of transgenic soybean. Planta 224:1050-1057.   DOI
23 Ge, X.J., Z.H. Chu, Y.J. Lin and S.P. Wang. 2006. A tissue culture system for different germplasms of indica rice. Plant Cell Rep. 25:392-402.   DOI
24 Jaganathan, D., K. Ramasamy, G. Sellamuthu, S. Jayabalan and G. Venkataraman. 2018. CRISPR for crop improvement: an update review. Front. Plant Sci. 9:985.   DOI
25 Kim, D.G., V. Kantayos, D.K. Kim, H.G. Park, H.H. Kim, E.S. Rha, S.C. Lee and C.H. Bae. 2016. Plant regeneration by in vitro tissue culture in Korean soybean (Glycine max L.). Korean J. Plant Res. 29(1):143-153 (in Korean).   DOI
26 Dufourmantel, N., G. Tissot, F. Goutorbe, F. Garcon, C. Muhr, S. Jansens, B. Pelissier, G. Peltier and M. Dubald. 2005. Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol. 58:659-668.   DOI
27 Flores, T., O. Karpova, X. Su, P. Zeng, K. Bilyeu, D.A. Sleper, H.T. Nguyen and Z.J. Zhang. 2008. Silencing of GmFAD3 gene by siRNA leads to low α-linolenic acids (18:3) of fad3-mutant phenotype in soybean [Glycine max (Merr.)]. Transgenic Res. 17:839-850.   DOI
28 Seo, M.S., C. Cho, M.S. Choi, J.B. Chun, M. Jin and D.Y. Kim. 2020. Status of molecular biotechnology research based on tissue culture of soybean. Korean J. Plant Res. 33(5):536-549 (in Korean).   DOI
29 Jeong, N., K.S. Kim, S. Jeong, J.Y. Kim, S.K. Park, J.S. Lee, S.C. Jeong, S.T. Kang, B.K. Ha, D.Y. Kim, N. Kim, J.K. Moon and M.S. Choi. 2019. Korean soybean core collection: genotypic and phenotypic diversity population structure and genome-wide association study. PLoS ONE 14(10): e0224074.   DOI
30 Karthik, S., G. Pavan, V. Krishnan, S. Sathish and M. Manickavasagam. 2019. Sodium nitroprusside enhances regeneration and alleviates salinity stress in soybean [Glycine max (L.) Merrill]. Biocatal. Agricult. Biotech. 19:101173.   DOI
31 Kim, H.S., H.S. Kim, K.H. Kim, Y.J. Oh, S.K. Suh and H.K. Park. 2005. Water absorption and germination ratio of sprout-soybean varieties affected by different planting date. Korean J. Crop Sci. 50(S):132-135 (in Korean).
32 Kim, J.M., I. Shin, S.K. Park, M.S. Choi, J.D. Lee, B.K. Ha, J. Lee, Y.J. Kang, S.C. Jeong, J.K. Moon and S. Kang. 2021. Soybean cultivar 'Hipro' for tofu and soymilk with high seed protein content and pod shattering resistance. Korean J. Breed. Sci. 53(1):60-68 (in Korean).   DOI