• Title/Summary/Keyword: 유실작물

Search Result 95, Processing Time 0.029 seconds

Effect of Grass Filter Strips on PO4-P and Soil Loss in Runoff from Forage Cropland (사료작물 재배지에서 초지식생대가 PO4-P 및 토양유실 저감에 미치는 영향)

  • Jo, Nam-Chul;Yoon, Sei-Hyung;Kim, Ki-Young;Lee, Ki-Won;Kim, Meng-Jung;Yook, Wan-Bang;Jung, Min-Woong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.30 no.4
    • /
    • pp.309-316
    • /
    • 2010
  • The performance of grass filter strips (GFS) in reducing $PO_4$-P concentrations and soil loss from the forage cropland was tested in an experiment on the 10% slope in Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration (RDA) from October 2007 to September 2009. Forage cropland with rye-corn double cropping system receiving inorganic fertilizer or livestock manure (LM) were compared in a natural condition. The plots were hydrologically isolated in a randomized block layout of 3 treatments $\times$ 2 factors $\times$ 3 replicates. Main plots consisted of the length of GFS, such as $25\;m^2$ ($5{\times}5\;m$), $50m^2$ ($5{\times}10\;m$), $75m^2$ ($5{\times}15\;m$). Sub plots consisted of the type of LM, such as chemical fertilizer (CF), cattle manure (CM) and swine manure (SM). Concentrations of $PO_4$-P in surface runoff water were reduced as the length of GFS increased. Especially, GFS with 10 m and 15 m reduced $PO_4$-P concentrations significantly compared to that with 0 m (p<0.05). However, there was not significant different between $PO_4$-P concentrations of GFS with 10m and that of GFS with 15 m. Moreover, Soil loss in surface runoff water were reduced as the length of GFS increased. GFS with 15 m reduced soil loss significantly compared to that with 5 m and 10 m (p<0.05). The results from this study suggest GFS improve the removal and trapping $PO_4$-P and soil loss from forage cropland.

Runoff of Diazinon and Metolachlor by Rainfall Simulation and from Soybean Field Lysimeter (인공강우와 콩재배 포장 라이시메타를 이용한 diazinon과 metolachlor의 유출량 평가)

  • Kim, Chan-Sub;Lee, Byung-Moo;Park, Byung-Jun;Jung, Pil-Kyun;Choi, Ju-Hyeon;Ryu, Gab-Hee
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.4
    • /
    • pp.279-288
    • /
    • 2006
  • Three different experiments were undertaken to investigate the runoff and erosion loss of diazinon and metolachlor from sloped-field by rainfall. The mobility of two pesticides and which phase they were transported by were examined in adsorption study, the influence of rainfall pattern and slope degree on the pesticide losses were evaluated in simulated rainfall study, and the pesticide losses from soybean field comparing with bare soil were measured in field lysimeter study. Freundlich adsorption parameter (K) ranged $1.6{\sim}2.0$ for metolachlor and $4.0{\sim}5.5$ for diazinon. The K values of pesticides by the desorption method were higher than those ones by the adsorption method. Another parameter (1/n) in Freundlich equation for the pesticides tested ranged $0.96{\sim}1.02$ by desorption method and $0.87{\sim}1.02$ by adsorption method. By the SSLRC's classification for pesticide mobility of diazinon and metolachlor were classified as moderately mobile ($75{\leq}Koc$ <500). Runoff and erosion losses of pesticides by three rainfall scenarios were $0.5{\sim}1.0%$ and $0.1{\sim}0.7%$ for metolachlor and $0.1{\sim}0.6%$ and $0.1{\sim}0.2%$ for diazinon. Distribution of pesticides in soil polite were investigated after the simulated rainfall events. Metolachlor was leached to $10{\sim}15$ cm soil layer and diazinon was leached to $5{\sim}10$ cm soil layer. Losses of each pesticide in the 30% of sloping degree treatment were $0.2{\sim}1.9$ times higher than those ones in the 10% of sloping degree treatment. Pesticide losses from a series of lysimeter plots in sloped land by rainfall ranged $1.0{\sim}3.1%$ for metolachlor and $0.23{\sim}0.50%$ for diazinon, and were $1/3{\sim}2.5$ times to the ones in the simulated rainfall study. The erosion rates of pesticides from soybean-plots were $21{\sim}75%$ lower than the ones from bare soil plots. The peak runoff concentration in soybean-plots and bare soil plots were $1{\sim}9{\mu}gL^{-1}$ and $3{\sim}16{\mu}gL^{-1}$ for diazinon, $7{\sim}31{\mu}gL^{-1}$ and $5{\sim}40{\mu}gL^{-1}$ for metolachlor, respectively.

Evaluation of the Dressed Soil applied in Mountainous Agricultural Land (산지농경지에 투입되는 모재성토의 특성과 농업환경에 미치는영향)

  • Joo, Jin-Ho;Park, Chol-Soo;Jung, Yeong-Sang;Yang, Jae-E;Choi, Joong-Dae;Lee, Won-Jung;Kim, Sung-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.245-250
    • /
    • 2004
  • Farmers typically apply the dressed soil (coarse saprolite) for various reasons in the sloped upland with high altitude in Kangwon province. However, little researches on the impacts of application of dressed soil in uplands were conducted. Therefore, it is necessary to assess soil quality in this area and to study adverse effects on soil and water due to application of dressed soil. Coarse saprolite itself showed signiScantly poor chemical properties, Particularly P and organic matter contents were not enough for crops to grow. With respect to biological qualities such as enzyme activity and microbial population, coarse saprolite itself showed poor qualities. For example, bacterial population in coarse saprolite contains six times or ten times smaller populations. Based on survey at Jawoon-ri in Hongchon-gun, this region is susceptible for soil erosion due to massive amounts of coarse saprolite application, undesirably long slope length, etc. When weestimated soil loss, more than 40% of farming field in this region exceeded $11.2MT\;ha^{-1}\;yr^{-1}$. According to experiment by installing sediment basins. the sediment basin with up-down tillage and application with dressed soil had the highest soil loss and runofT, while the sediment basin with contour tillage and without soil dressing showed the lowest soil erosion and runoff.

Evaluation on national environmental functionality of farming on soil loss using the USLE and replacement cost method (USLE모형과 대체법을 이용한 밭농사의 토양유실 저감기능 계량화 평가)

  • Hyun, Byung-Keun;Kim, Moo-Sung;Eom, Ki-Cheol;Kang, Ki-Kyung;Yun, Hong-Bae;Seo, Myung-Cheol;Sung, Ki-Seog
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.6
    • /
    • pp.361-371
    • /
    • 2002
  • Multifunctionality of agriculture has been an important international issue in terms of environmental benefits and public concerns. We calculated soil loss mass in national basis using the USLE, and attempted to evaluate its economical benefits by replacement cost method. Soil loss mass ranged from 1.4 to $18MT\;ha^{-1}\;yr^{-1}$ was fairly fitted to measured values for 13 cropping systems. In national basis, the factors in USLE were evaluated as: 429.4 for rainfall and runoff factor. R, 0.15 for soil erodibility factor, K, 1.72 for topographic factor, LS, 0.275 for cover and management factor, C, and 0.856 for support practice factor, P. The soil loss estimated from upland farming using the USLE was $26.1MT\;ha^{-1}\;yr^{-1}$, but soil loss from the bare soil was $110.8MT\;ha^{-1}\;yr^{-1}$, the ratio of soil loss from upland farming to bare soil was 23 percents. Function of reducing soil loss in comparison with the bare soil was $84.7MT\;ha^{-1}\;yr^{-1}$, of which national soil loss mass was 62.6 million MT per annum in south Korea. Agriculture economic replacement cost of soil loss reduction was 497 billion Wons(398 million dollars) for the cost of upland soil dressing. For conservational purposes to increase the environmental benefits of upland farming, the agricultural practice including contour, strip cropping, terracing and division ditches should be implemented.

Runoff and Erosion of Alachlor, Ethalfluralin, Ethoprophos and Pendimethalin from Soybean Field Lysimeter (콩재배 포장 라이시메타를 이용한 alachlor, ethalfluralin, ethoprophos 및 pendimethalin의 유출량 평가)

  • Kim, Chan-Sub;Lee, Hee-Dong;Oh, Byung-Youl;Lee, Young-Deuk
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.297-305
    • /
    • 2006
  • The field lysimeter experiment were undertaken to investigate the runoff and erosion loss of four pesticides from sloped land by rainfall and to assess the influence of pesticide properties, environmental factors and agricultural practices on them. The pesticide losses from soybean planted field and bare field were measured using field lysimeters. Pesticide losses from a series of lysimeter plots of sloped land by rainfall ranged $0.1{\sim}0.6%$ for alachlor, $1.1{\sim}4.5%$ for ethalfluralin, $8{\sim}31%$ for pendimethalin and 0.03% for ethoprophos, which were $1/3{\sim}2.5$ times to them in the simulated rainfall study. The erosion loss rates of pesticides from soybean-plots were $21{\sim}75%$ lower than the ones from bare soil plot. The effect of slope conditions was not great for runoff loss, but for erosion loss increased to maximum $4{\sim}12$ times by sloping degree and slope length. The peak runoff concentration in soybean-plots and bale soil plots were $3{\sim}278{\mu}gL^{-1}\;and\;6{\sim}450{\mu}gL^{-1}$ for alachlor, $1.1{\sim}11.4{\mu}gL^{-1}\;and\;0.9{\sim}16{\mu}gL^{-1}$ for ethalfluralin, $7{\sim}42{\mu}gL^{-1}\;and\;6{\sim}66{\mu}gL^{-1}$ for pendimethalin, and $2{\sim}53{\mu}gL^{-1}\;and\;0.1{\sim}113{\mu}gL^{-1}$ for ethoprophos, respectively, on nine different slope degree and slope length plots. Therefore, the differences of the peak runoff concentration between bare soil plots and soybean-plots were not great.

Evaluation of Soil Management Practices Using Wild Edible Greens for Reduction of Soil Erosion in Highland (고랭지 경사전 산채류 재배에 의한 토양 유실 저감 평가)

  • Joo, Jin Ho;Kim, Su-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.6
    • /
    • pp.488-494
    • /
    • 2007
  • Highland regions for farming are generally located in slopes higher than 7%, where alpine farming systems rely on highly input agriculture management with great amounts of chemical fertilizer and/or compost. Most of the uplands is thus needed to maintain environmentally friendly soil management due to its impact on soil erosion and runoff during heavy rainfall season. Therefore, the objective of this research is to evaluate the effect of reduction of soil erosion by applying four wild edible greens (fatsia, goat beard, leopard plant, and aster). The lysimeter experiment of slope gradients of 15, 30, and 45% was conducted in an alpine region of Hoengkye, Kangwon, in 2005 and 2006. In 2005, both amounts of soil loss from the experiment plots cultivated with goat beard and aster were lower than one with Chinese cabbage by about 50%. The amounts of runoff of goat beard and aster plots were also lower than those of the others. An increase in the slope gradients was accompanied with an increase in runoff. Of the plots of slope gradient of 15, 30, and 45%, S of goat beard plots was 52.50, 108.33, and 171.50 kg, respectively. Soil loss of Chinese cabbage was 2 to 3 times as high as those of goat beard plots. These results suggest that goat beard and aster plants with minimum tillage reduce soil erosion compared to Chinese cabbage cultivation.

Effect of the Landscape Crop, Chrysanthemum zawadskii on Reducing Soil Loss in Highland Sloping Area (경관작물 구절초의 고랭지 경사지 밭 토양유실 경감 효과)

  • Kim, Su Jeong;Sohn, Hwang Bae;Hong, Su Young;Kim, Tae Young;Lee, Jung Tae;Nam, Jung Hwan;Chang, Dong Chil;Suh, Jong Taek;Kim, Yul Ho
    • Korean Journal of Plant Resources
    • /
    • v.33 no.1
    • /
    • pp.15-23
    • /
    • 2020
  • There is high vulnerability of soil loss in sloping and highland used for agricultural production due to the low surface covering in summer rainy season. This study evaluated the surface-covering rate of landscape crop in reducing soil loss in the highland. The experiment was conducted in a 55% sloped lysimeter with three treatments of planting density using Korean native chrysanthemum, and investigated the soil coverage rate, run-off water, and soil erosion. The three treatments according to the degree of soil covering are bare soil as the control treatment TC, coverage rate of 43-59% for treatment T1, and, coverage rate of 63-81% for treatment T1, and T2. During the cultivation period, the average reduction of run-off water was 71% for treatment T1 and 76% for treatment T2, which are better, compared with the control. The reduction in eroded soil was 84% in treatment T1 and 98% for treatment T2, which is also better than the control treatment. Therefore, it is possible to alleviate the soil loss in sloping lands by planting chrysanthemum, which is superior among the perennial plant species and considered as a crop with economic value.

Runoff of Endosulfan by Rainfall Simulation and from Soybean-grown Field Lysimeter (인공강우와 콩재배 포장 라이시메타를 이용한 endosulfan의 유출량 평가)

  • Kim, Chan-Sub;Lee, Hee-Dong;Ihm, Yang-Bin;Im, Geon-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.343-350
    • /
    • 2007
  • Three different experiments were carried out to investigate the runoff and erosion losses of endosulfan from sloped-field by rainfall. The mobility of endosulfan and which phase it was transported by were examined in adsorption study, the influence of rainfall pattern and slope degree on the pesticide loss were evaluated in simulated rainfall study, and the pesticide losses from soybean-grown field comparing with bare soil were measured in field lysimeter study. Adsorption parameter (K) of endosulfan ranged from 77 to 131 by adsorption method and K values by the desorption method were higher than those by the adsorption method. By the SSLRC's classification for pesticide mobility endosulfan was classified as non-mobile class ($K_{oc}>4,000$). Runoff and erosion loss of endosulfan by three rainfall scenarios ranged from 3.4 to 5.6%and from 4.4 to 15.6%of the amount treated. Endosulfan residues were mainly remained at the top 5 cm of soil depth after the simulated rainfall study. Pesticide loss in case of 30%-slope degree ranged from 0.6 to 0.9 times higher than those in case of 10%-slope degree. The difference of pesticide runoff loss was related with its concentration in runoff water and the difference of pesticide erosion loss would related closely with the quantity of soil eroded. Endosulfan losses from a series of lysimeter plots in sloped land by rainfall ranged from 5 to 35% of the amount treated. The erosion rate of endosulfan from soybean-plots was 66% of that from bare soil plots. The effect of slope conditions was not great for runoff loss, but was great for erosion loss as increasing to maximum $4{\sim}12$ times with slope degree and slope length. The peak runoff concentration of endosulfan in soybean-plots and bare soil plots ranged from 8 to 10 and from 7 to $9{\mu}gL^{-1}$ on nine plots with different slope degree and slope length. Therefore the difference of the peak runoff concentrations between bare soil plots and soybean-plots were not great.

Evaluation of Runoff‧Peak Rate Runoff and Sediment Yield under Various Rainfall Intensities and Patterns Using WEPP Watershed Model (다양한 강우강도 및 패턴에 따른 WEPP 모형의 유출‧첨두유출‧토양유실량 평가)

  • Choi, Jae-Wan;Ryu, Ji-Chul;Kim, Ik-Jae;Lim, Kyoung-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.8
    • /
    • pp.795-804
    • /
    • 2012
  • Recently, changes in rainfall intensity and patterns have been causing increasing soil loss worldwide. As a result, the water ecosystem becomes worse and crops yield are reduced with soil loss and nutrient loss with it. Many studies have been proposed to estimate runoff and soil loss to predict or decrease non-point source pollution. Although the USLE has been used for many years in estimating soil losses, the USLE cannot reflect effects on soil loss of changes in rainfall intensity and patterns. The WEPP, physically based model, is capable of predicting soil loss and runoff using various rainfall intensity. In this study, the WEPP model was simulated for sediment yield, runoff and peak runoff using data of 5, 10, 30, 60 minute term rainfall, Huff's method and design rainfall. In case of rainfall interval of 5 minutes and 60 minutes, the sediment and runoff values decreased by 24% and 19%, respectively. The peak rate runoff values decreased by 16% when rainfall interval changed from 5 minutes to 60 minutes, indicating the peak rate runoff values are affected by rainfall intensity to some degrees. As a result of simulating using Huff's method, all values (sediment yield, runoff, peak runoff) were found to be the greatest at third quartile. According to the analysis under various design rainfall conditions (2, 3, 5, 10, 20, 30, 50, 100, 200, 300 years frequency), sediment yield, runoff, and peak runoff of 906.2%, 249.4% and 183.9% were estimated using 2 year to 300 year frequency rainfall data.

Best Management Practices Reducing Soil Loss in the Saprolite Piled Upland in Hongcheon Highland (고령지 석비레 성토 밭의 토양유실 저감을 위한 최적영농관리방안)

  • Park, Chol-Soo;Jung, Yeong-Sang;Joo, Jin-Ho;Lee, Jung-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.119-126
    • /
    • 2005
  • Soil erosion at Jawoon-Ri in Hongcheon highland is one of serious problems since saprolite piling on farmland has been typically practiced at 2-3 year's intervals. The objective of the case study was to survey management practices such as tillage, application of saprolite, and cultivating crops and to propose best management practices (BMP) to reduce soil loss in Jawoon-Ri, Hongcheon-Gun. Jawoon-Ri is located in the upper stream of Naerinchun. Upland areas of Jawoon 2 and 4Ri were 206.9 and 142.3 hectare, respectively. Estimation of soil loss in this study was based on USLE (Universal soil loss equation). Annual averaged soil losses were 15.6 MT per hectare in Jawoon-2Ri and 9.0 MT per hectare in Jawoon-4Ri, respectively. This case study tried to find methods to reduce soil erosion below tolerant soil loss level which is $11MT\;ha^{-1}\;yr^{-1}$. Estimated soil losses in more than 40% of uplands in Jawoon-2Ri and 4Ri were higher than tolerant soil loss level. Especially, edge of uplands undergone excessive soil erosion by concentrated runoff water. Therefore consolidation of upland edge was included as one of the proposed Best management practices BMP). The proposed BMP in this area were buffer strips, contour and mulching, diversion drain channel, grassed water-way, detour watet-way and cover crops and so on. Amounts for BMP requirements were 7,680 m for buffer strips, 123 ha (35%) for contour and mulching, 201 ha (57%) for diversion drain channel, 13,880 m for grassed water-way, 3,860 m for detour drainage, 8,365 m for sloping side consolidation and 3,492 ha for cover crops, respectively. Application of BMP are urgently needed in uplands which is direct conjunction with stream.