DOI QR코드

DOI QR Code

Runoff and Erosion of Alachlor, Ethalfluralin, Ethoprophos and Pendimethalin from Soybean Field Lysimeter

콩재배 포장 라이시메타를 이용한 alachlor, ethalfluralin, ethoprophos 및 pendimethalin의 유출량 평가

  • Kim, Chan-Sub (Pesticide Safety Division, National Institute of Agriculture Science and Technology, Rural Development Administration) ;
  • Lee, Hee-Dong (Pesticide Safety Division, National Institute of Agriculture Science and Technology, Rural Development Administration) ;
  • Oh, Byung-Youl (Pesticide Safety Division, National Institute of Agriculture Science and Technology, Rural Development Administration) ;
  • Lee, Young-Deuk (Division of Life and Environmental Science, Daegu University)
  • 김찬섭 (농촌진흥청 농업과학기술원 농약평가과) ;
  • 이희동 (농촌진흥청 농업과학기술원 농약평가과) ;
  • 오병렬 (농촌진흥청 농업과학기술원 농약평가과) ;
  • 이영득 (대구대학교 생명환경학부)
  • Published : 2006.12.31

Abstract

The field lysimeter experiment were undertaken to investigate the runoff and erosion loss of four pesticides from sloped land by rainfall and to assess the influence of pesticide properties, environmental factors and agricultural practices on them. The pesticide losses from soybean planted field and bare field were measured using field lysimeters. Pesticide losses from a series of lysimeter plots of sloped land by rainfall ranged $0.1{\sim}0.6%$ for alachlor, $1.1{\sim}4.5%$ for ethalfluralin, $8{\sim}31%$ for pendimethalin and 0.03% for ethoprophos, which were $1/3{\sim}2.5$ times to them in the simulated rainfall study. The erosion loss rates of pesticides from soybean-plots were $21{\sim}75%$ lower than the ones from bare soil plot. The effect of slope conditions was not great for runoff loss, but for erosion loss increased to maximum $4{\sim}12$ times by sloping degree and slope length. The peak runoff concentration in soybean-plots and bale soil plots were $3{\sim}278{\mu}gL^{-1}\;and\;6{\sim}450{\mu}gL^{-1}$ for alachlor, $1.1{\sim}11.4{\mu}gL^{-1}\;and\;0.9{\sim}16{\mu}gL^{-1}$ for ethalfluralin, $7{\sim}42{\mu}gL^{-1}\;and\;6{\sim}66{\mu}gL^{-1}$ for pendimethalin, and $2{\sim}53{\mu}gL^{-1}\;and\;0.1{\sim}113{\mu}gL^{-1}$ for ethoprophos, respectively, on nine different slope degree and slope length plots. Therefore, the differences of the peak runoff concentration between bare soil plots and soybean-plots were not great.

강우에 의한 경사지 토양으로부터의 농약 유출양상을 파악하고 그에 대한 농약의 특성, 환경적 요인 및 영농방법 등의 영향 정도를 평가하기 위하여 콩 재배 경사지 포장에 설치된 포장 lysimeter에서의 경사도와 경사장 및 작물의 재배 유무에 따른 농약의 표면유출 양상을 파악하고자 하였다. Lysimeter 포장유출실험 결과 경사도 및 경사장별 나지구의 유실량은 alachlor $0.1{\sim}0.6%$, ethalfluralin $1.1{\sim}4.5%$, ethoprophos 0.03% 및 pendimethalin $8{\sim}31%$ 수준이었으며, 인공강우실험의 유실율에 비하여 $1/3{\sim}2.5$배 수준으로 나타났다. 콩재배구의 유실율은 나지구의 유실율에 비하여 평균적으로 $21{\sim}75%$ 감소된 것으로 나타났다. 경사조건의 영향을 살펴보면 유출수의 경우에는 그 차이가 크지 않았으나 유실토양에 의한 유실율은 최대 $4{\sim}12$배까지 증가하는 것으로 나타났다. 한편 유출수 중 농약성분의 최고농도는 콩재배구 및 나지구 각각 ethalfluralin $1.1{\sim}11.4{\mu}gL^{-1}$$0.9{\sim}16{\mu}gL^{-1}$, pendimethalin $7{\sim}42{\mu}gL^{-1}$$6{\sim}66{\mu}gL^{-1}$ 수준으로 작물재배 유무에 따른 유출수 중 농도의 차이는 크지 않은 것으로 나타났다. 따라서 농약의 살포지역 외부로의 유출은 기본적으로는 강우와 경사조건에 따른 물 유출량과 토양의 유실량에 의하여 결정되고 작물의 피복정도에 따라 감소하는 것으로 결론지을 수 있을 것이다.

Keywords

References

  1. Leonard, R. A. (1990) Movement of pesticides into surface waters,In Pesticides in the soil environment: processes, impacts and modeling. H. H. Cheng, (Ed.), Soil Science Society of America, Madison, WI. 303-349
  2. Kim, S. S., Kim, T. H., Lee, S. M., Park, D. S., Zhu, Y. Z. and Hur, J. H. (2005) Mobility of pesticides in different slopes and soil collected from Gangwon alpine sloped-land under simulated rainfall conditions. Korean J. Pestic. Sci. 9(4), 316- 329
  3. Jury, W. A., Focht, D. D. and Farmer, W. J. (1987) Evaluation of pesticide groundwater pollution potential from standard indices of soil-chemical adsorption and biodegradation. J. Environ. Qual. 16, 422-428 https://doi.org/10.2134/jeq1987.00472425001600040022x
  4. Boesten, J. J. T. I. and van der Linden, A. M. A. (1991) Modeling the influence of sorption and transformation on pesticide leaching and persistence. J. Environ. Qual. 20, 425-435 https://doi.org/10.2134/jeq1991.00472425002000020015x
  5. Gustafson, D. I. (1989) Groundwater ubiquity score: A simple method for assessing pesticide leachability. Environ. Toxicol. Chem. 8, 339-357 https://doi.org/10.1897/1552-8618(1989)8[339:GUSASM]2.0.CO;2
  6. Jarvis, N. J., Hollis, J. M., Nicholls, P. H., Mayer T. and Evans, S. P. (1997) MACRO_DB : A decisionsupport tool for assessing pesticide fate and mobility in soils. Environmental Modelling & Software 12, 251-265 https://doi.org/10.1016/S1364-8152(97)00147-3
  7. FOCUS (2004) FOCUS surface water scenarios in the EU evaluation process under 91/414/EEC. pp 294
  8. Moon, Y. H., Kim, Y. T., Kim, Y. S. and Han, S. K. (1993) Simulation and measurement of degradation and movement of insecticide ethoprophos in soil. Korean J. Environ. Agric. 12(3), 209-218
  9. Hyun, H. N., Oh, S. S. and Yoo, S. H. (1995) Adsorption and movement of alachlor and chlorothalonil in the representative soil of Cheju island. Korean J. Environ. Agric. 14(2), 135-143
  10. Kim, C. S., Lee, B. M., Ihm, Y. B. and Choi, J. H. (2002) Leaching potential of butachlor, ethoprophos, iprobenfos, isoprothiolane and procymidone in soils as affected by adsorption characteristics. Korean J. Pestic. Sci. 6(4), 309-319
  11. Kim, C. S., Park, B. J., Ihm, Y. B. and Ryu, G. H. (2005) Adsorption characteristics of organophosphorus and carbamate pesticides in four soils and the evaluation for their leaching potential using two screening models. Korean J. Environ. Agric. 24(4), 341-349 https://doi.org/10.5338/KJEA.2005.24.4.341
  12. Kim, C. S., Park, K. H., Kim, J. B. and Choi, J. H. (2002) Leaching and mobility prediction of butachlor, ethoprophos, iprobenfos, isoprothiolane and procymidone in soils. Korean J. Pestic. Sci. 6(4), 300-308
  13. Kim, C. S., Ihm, Y. B., Lee, H. D. and Oh, B. Y. (2005) Leaching of organophosphorus and carbamate pesticides in soil column and prediction of their mobility using the convective mobility test model in soils. Korean J. Environ. Agric. 24(4), 350-357 https://doi.org/10.5338/KJEA.2005.24.4.350
  14. Kim, K. (1997) Studies on pesticide runoff from soil surface by rainfall. Ph. D. Thesis, Seoul National University
  15. Kim, K., Kim, J. H. and Park, C. K. (1997) Pesticide runoff from soil surface by rainfall. Korean J. Environ. Agric. 16(3), 274-284
  16. McCall, P. J., Swann, R. L., Laskowski, D. A., Unger, S. M., Vrona, S. A. and Dishburger, H. J. (1980) Estimation of chemical mobility in soil from liquid chromatographic retention times. Bull. Environ. Contam. Toxicol. 24, 190-195 https://doi.org/10.1007/BF01608096
  17. Roberts, T. R. (1996) Assessing the environmental fate of agrochemicals. J. Environ. Sci. Health. B31, 325-335
  18. Wischmeier, W. H. and Smith, D. D. (1978) Predicting rainfall erosion losses - A guide to conservation planning. USDA Agriculture Handbook No. 537
  19. Tomlin, C. (ed.) (2003) The pesticide manual (13th ed.). British Crop Protection Council
  20. U.S. EPA (1998) Reregistration Eligibility Decision for Alachlor. U.S. EPA Doc No. 738-R-98-020
  21. EU EFSA (2004) Draft Assessment Report for Ethoprophos: Annex B. Environmental Fate and Behaviour
  22. U.S. EPA (1997) Reregistration Eligibility Decision for Pendimethalin. U.S. EPA Doc No. 738-R-97- 007
  23. Lee, Y. D., Kim, H. J., Chung, J. B. and Jeong, B. Y. (2000) Loss of pendimethalin in runoff and leaching from turfgrass land under simulated rainfall. J. Agric. Food Chem. 48(11), 5376-5382 https://doi.org/10.1021/jf0005869
  24. Kim, C. S., Ihm, Y. B., Oh, B. Y. and Lee, Y. D. (2006) Runoff and erosion of alachlor, ethalfluralin, ethoprophos and pendimethalin by rainfall simulation. Korean J. Environ. Agric. 25(4), (in press) https://doi.org/10.5338/KJEA.2006.25.4.306

Cited by

  1. Leaching Characteristics of the Endocrine Disruptor-suspected Pesticides in Upland Soil vol.17, pp.3, 2013, https://doi.org/10.7585/kjps.2013.17.3.168