• Title/Summary/Keyword: 유방조직 팬텀

Search Result 25, Processing Time 0.027 seconds

Observation with Calcifications of Breast Tissue Phantoms Using Acoustic Resonance (공명현상을 이용한 유방조직 팬텀의 석회화 관찰)

  • Ha, Myeung-Jin;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • Diagnosis of breast ultrasound is better than mammography in the early detection of breast cancer, but, it is difficult to detect microcalcification. We studied on detection for calcification of breast tissue using acoustic resonance and power doppler with 7.5 MHz linear probe in breast ultrasound. We first constructed breast tissue phantom made of gelatin and saw breast, and then observed calcification by the change of external vibration. Calcification injected breast tissue phantom visualized the difference for brightness and region of color in ROI regions of power doppler. Acoustic resonance almost never visualized in low frequency regions, plateau constituted in about 300-400 Hz and colors vanished according to the increase of frequency.

  • PDF

Diagnosis of Micro-Calcified Lesions of Breast Tissue Phantoms Using Acoustic Resonance Coupled with Power Doppler (공명현상과 파워도플러를 이용한 유방조직 팬텀의 미세 석회화 병변 진단)

  • Kim, Jeong-Koo;Ha, Myeung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.80-86
    • /
    • 2008
  • Breast ultrasound has many advantages over mammography but suffers from a shortcoming of being not suitable in detecting microcalcification. We studied on a method based on acoustic resonance and power Doppler to detect calcification of breast tissue using a typical 7.5 MHz linear probe used in breast ultrasound examination. We first constructed a breast tissue phantom made of gelatin and then observed calcified legions as external vibrations varied. Calcification injected to the breast tissue phantom being resonated different from the surrounding medium, and its acoustic resonance driven by external vibrations was visualized by differences for color brightness and area in ROI of power doppler. In low frequency regions, the acoustic resonance almost not appeared and showed a plateau in $300{\sim}600\;Hz$ and the color vanished as the frequency further increased.

A study of dose and image quality with Convergence FFDM and DBT using tissue-equivalent phantom in digital mammography (유방조직등가 팬텀을 이용한 디지털유방촬영장치의 FFDM과 DBT의 선량과 영상품질에 대한 융합 연구)

  • Yoo, Young-Sin;Han, Dong-Kyoon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.2
    • /
    • pp.29-34
    • /
    • 2019
  • In this study, we measure dose against various density and thickness using phantom to compare FFDM to DBT of Digital mammography equipment and evaluate usefulness of DBT through compare the image quality of FFDM and DBT. We use mammography equipment, Selenia Dimensions ; this is able to examine breast by both FFDM and DBT, The results are that when the thickness of phantom is 6cm or more and density is 70% or more and the thickness of phantom is 7cm or more and density is 50% or more, AGD of DBT is lower than that of FFDM. The evaluation results of image quality are that in the tumor and small calcification group that composed by mammary tissue and fat, FFDM is great and in fibrin, DBT is great. But in the all thicknesses of BR3D phantom that reflected overlapped tissue of breasts, DBT is great in calcification group, fibrin and tumor. DBT is greater image quality and lower dose more than FFDM in Thick and high density breast, Therefore, DBT is more useful in Korean women's breast that is characterized dense breast than FFDM.

The study on Development and characteristic of ultrasound biopsy training phantom of breast (유방 초음파 팬텀의 제작과 특성에 관한 연구)

  • Ma, Sang-Chull;Kong, Young-Kun;Ahn, Young-Man
    • Journal of radiological science and technology
    • /
    • v.26 no.3
    • /
    • pp.19-24
    • /
    • 2003
  • We carried out studies on development and characteristic of ultrasound brast training biopsy phantom. the major finding were of follow ; (1) C type TMM was shown good homogeneity, brightness and attenuation as like human soft tissue. (2) $TiO_2$ 4.10%w/v TMM was shown good homogeneous echo texture and propagated speed as like the human Tissue. (3) $TiO_2$ type TMM was appeared lower brightness and higher penetration rate than C type TMM. Therefor, Breast TM phantom and target material TMM will be useful $TiO_2$ 4.10 %w/v TMM and C 2.09 %w/v TMM.

  • PDF

Analysis of Observer Agreement in Shear Wave Elastography using a Breast Phantom (유방 팬텀을 활용한 전단파 탄성초음파 검사에서의 관측자 일치도 분석)

  • Jin-Hee Kim;Jung-Hoon Kim;Sung-Hee Yang
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.4
    • /
    • pp.355-363
    • /
    • 2024
  • This study evaluated the clinical utility of Shear Wave Elastography(SWE) by analyzing the differences in elastic modulus and shear wave speed across various types of breast tissue and assessing inter-observer agreement. A breast phantom that included normal breast tissue, benign tumors, and malignant tumors was utilized, and ten radiologists participated, measuring the minimum, average, and maximum elastic modulus and shear wave speed for each tissue type. Analysis of differences between tissues was conducted using one-way ANOVA, and intra- and inter-observer agreement was assessed using the Intraclass Correlation Coefficient(ICC). The results demonstrated significant differences in the average values of elastic modulus and shear wave speed among the tissue types(p<0.001), with malignant tumor tissues showing the highest average values. Furthermore, the ICC analysis for elastic modulus ranged from 0.75 to 0.99 and for shear wave speed from 0.89 to 0.99, indicating high reproducibility and agreement. These findings suggest that SWE is a reliable tool with high reproducibility and specificity for the diagnosis of breast cancer.

The Evaluation of Radiation Dose by Exposure Method in Digital Magnification Mammography (디지털 유방확대촬영술에서 노출방식에 따른 피폭선량 평가)

  • Kim, Mi-Young;Kim, Hwa-Sun
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.293-298
    • /
    • 2012
  • In digital mammography, Exposure factor were automatically chosen using by measurement breast thickness and the density of mammary gland. It may cause a increase glandular dose. The purpose of this study was to investigate optimal image quality in digital magnification mammography to decrease radiation exposure of patient dose. Auto mode gives the best image quality however, AGD showed better image quality. Image quality of manual mode passed phantom test and SNR at 55% mAs of auto mode commonly used in the digital magnification mammography. Also it could reduce AGD. According to result, manual mode may reduce the unnecessary radiation exposure in digital magnification mammography.

Micrometer Spatial Resolution Imaging System Using Synchrotron X-ray (Synchrotron X-선을 이용한 Micrometer 공간 분해능 영상시스템)

  • 홍진오;정해조;정하규;제정호;김은경;유형식;김희중
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.165-169
    • /
    • 2001
  • 최근 포항 방사광 가속기 연구소에 미세구조 X-선 영상 실험을 위한 5C1 방사광(Synchrtoron Radiation) 빔라인이 건설되었다. 광대역의 에너지 스펙트럼을 가진 방사광 X-선이 물체를 투과한 후 CdWO$_{4}$ scintillator에 의해 가시광선으로 바뀌고, 그 빛을 CCD 카메라로 받아들여 영상을 획득하게 된다. 방사광 X-선은 일반 의료진단용 X-선에 비하여 위상이 일치하고, 평행하며, 그 양이 풍부한 특성들을 갖고 있다. 방사광 영상시스템과 X-선 유방촬영 시스템에서 영상을 획득하여 영상특성들을 비교, 분석하였다. 고-분해능 X-선 시험 패턴(20 line pairs mm$^{-1}$), 유방촬영 팬텀, 파라핀에 고정한 인체 유방암조직과 포르말린에 고정한 인체 유방암조직, 그리고 capillary tube내 micro-bubbles등의 방사광 영상은 기존의 X-선 유방촬영시스템에서 얻은 영상보다 분해능이 뛰어나고 영상질도 우수하였다. 방사광 X-선 영상시스템은 micrometer 공간 분해능 영상을 획득할 수 있어 많은 기초분야의 영상연구와 의료영상분야에서도 활발하게 활용될 것으로 기대된다.

  • PDF

Consideration Regarding the Breast Cancer Treatment Plan That Used Irregular Surface Compensator (ISC) (Irregular Surface Compensator (ISC)를 이용한 유방암치료계획에 관한 고찰)

  • Je, Young-Wan;Kim, Chan-Yong;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.131-141
    • /
    • 2007
  • Purpose: Try to compare dose distribution and lung dose of radiation treatment plan of the breast cancer that used Irregular Surface Compensator (ISC) and treatment plan that used a wedge filter. Materials and Methods: Established a treatment plan to be distributed over 95% of prescription dose (5,040 cGy) of the two tangent-half fields that used a wedge filter and ISC at a breast organization as made to breast cancer patient having an irregular surfaces after surgery. Compared high dose area and DVH, and verified a treatment plan as used film with rectangular phantom. Results: Maximum dose point in breast tissue appeared to 107.5% in case of tangent-half fields Tx plan that used a wedge filter, and lung volumes exposed above 20 Gy by 7.63%. In case of ISC, maximum dose point in breast tissue appeared to 106.4%, and lung volumes exposed above 20 Gy by 6.5%. The film measurement results that used phantom, 105$\sim$110% high dose region was distributed to the upper part and both edges of phantom. However in case of ISC, appeared by 100$\sim$105% dose conformity distribution. Conclusion: In general, the Irregular Surface Compensator (ISC) can improve the dose conformity of breast tissues, as well as reduced hot spots in the lung and in the breast. Such an advantage by using ISC technique is more beneficial for patients who have more irregular surfaces after surgery.

  • PDF

Comparison of Average Glandular Dose in Screen-Film and Digital Mammography Using Breast Tissue-Equivalent Phantom (유방조직등가 팬텀을 이용한 Screen-Film과 Digital Mammography에서의 평균 유선선량)

  • Shin, Gwi-Soon;Kim, Jung-Min;Kim, You-Hyun;Choi, Jong-Hak;Kim, Chang-Kyun
    • Journal of radiological science and technology
    • /
    • v.30 no.1
    • /
    • pp.13-23
    • /
    • 2007
  • In recent years, mammography system is changed rapidly from conventional screen-film system to digital system for application to screening and diagnosis. Digital mammography system provides several advantages over screen-film mammography system. According to the information provided by the manufacturer, digital mammography system offers radiation dose reduction in comparison with screen-film mammography system, because of digital detector, particularly direct digital detector has higher x-ray absorption efficiency than screen-film combination or imaging plate(IP). We measured average glandular doses(AGD) in screen-film mammography(SFM) system with slow screen-film combination, computed mammography(CM) system, indirect digital mammography(IDM) system and direct digital mammography(DDM) system using brest tissue-equivalent phantom(glandularity 30%, 50% and 70%). The results were shown as follows : AGD values for DDM system were highest than those for other systems. Although automatic exposure control(AEC) mode was selected, the curve of the AGD values against thickness or glandularity increased significantly for the SFM system with the uniform target/filter(Mo/Mo) combination. Therefore, the AGD values for the high energy examinations were highest in the SFM system, and those for the low energy examinations were highest in the DDM system. But the curve of the AGD values against thickness and glandularity increased gently for CM system with the automatic selection of the target/filter combination (from Mo/Mo to Mo/Rh or from Mo/Rh to Rh/Rh), and the AGD values were lowest. Consequently, the parameters in mammography for each exposure besides detection efficiency play an important role in oder to estimate a patient radiation dose.

  • PDF

Evaluation of artifacts around the breast expander according to magnetic field strength (자장의 세기에 따른 유방 확장기 주위의 인공물 평가)

  • Jung, Dong- Il;Kim, Jae-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1144-1149
    • /
    • 2020
  • The magnetic valve of the breast tissue expander generates imaging artifacts during MRI examination, so MRI examination is limited. To evaluate the effect of imaging artifacts on the diagnosis area for patients with breast tissue expander who need MRI examination. Imaging artifacts were measured using self-made phantoms and actual clinical conditions. Imaging artifacts were measured differently depending on the environment of 1.5 Tesla and 3.0 Tesla, and the effects of imaging artifacts were less in the C-spine and L-spine tests. If MRI due to breast cancer metastasis is absolutely necessary, head & neck examination and L-spine can be examined mainly at 1.5 Tesla, but some sequences may cause distortion due to image artifacts. In terms of safety, MRI scans of patients with breast tissue expanders can be performed conditionally at 1.5T, avoiding 3.0T.