DOI QR코드

DOI QR Code

Analysis of Observer Agreement in Shear Wave Elastography using a Breast Phantom

유방 팬텀을 활용한 전단파 탄성초음파 검사에서의 관측자 일치도 분석

  • Jin-Hee Kim (Department of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Jung-Hoon Kim (Department of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Sung-Hee Yang (Department of Radiological Science, College of Health Sciences, Catholic University of Pusan)
  • 김진희 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 김정훈 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 양성희 (부산가톨릭대학교 보건과학대학 방사선학과)
  • Received : 2024.07.17
  • Accepted : 2024.08.31
  • Published : 2024.08.31

Abstract

This study evaluated the clinical utility of Shear Wave Elastography(SWE) by analyzing the differences in elastic modulus and shear wave speed across various types of breast tissue and assessing inter-observer agreement. A breast phantom that included normal breast tissue, benign tumors, and malignant tumors was utilized, and ten radiologists participated, measuring the minimum, average, and maximum elastic modulus and shear wave speed for each tissue type. Analysis of differences between tissues was conducted using one-way ANOVA, and intra- and inter-observer agreement was assessed using the Intraclass Correlation Coefficient(ICC). The results demonstrated significant differences in the average values of elastic modulus and shear wave speed among the tissue types(p<0.001), with malignant tumor tissues showing the highest average values. Furthermore, the ICC analysis for elastic modulus ranged from 0.75 to 0.99 and for shear wave speed from 0.89 to 0.99, indicating high reproducibility and agreement. These findings suggest that SWE is a reliable tool with high reproducibility and specificity for the diagnosis of breast cancer.

본 연구는 전단파 탄성초음파(SWE)의 임상적 유용성을 평가하기 위해 유방 조직의 탄성 계수와 횡파 속도의 차이를 분석하고 관찰자 간 일치도를 평가하였다. 정상 유방 조직, 양성 종양, 악성 종양을 포함하는 유방 팬텀을 사용하였으며 10명의 방사선사가 각 조직 유형별 최소, 평균, 최대 탄성 계수와 횡파 속도를 측정하였다. 조직 간의 차이 분석은 일원 분산분석을 시행하였으며 급내 상관계수(ICC)를 통해 관측자 내 및 관측자 간 일치도를 평가하였다. 그 결과 각 조직 간의 탄성 계수 및 횡파 속도의 평균에서 유의한 차이를 보였으며(p<0.001), 악성 종양 조직에서 가장 높은 평균 값을 나타냈다. 또한, 관측자 간 및 관측자 내일치도 분석에서 ICC는 탄성 계수는 0.75-0.99, 횡파 속도는 0.89-0.99로 나타나 높은 재현성과 일치도를 보였다. 이러한 결과는 SWE가 유방암 진단에 있어 신뢰할 수 있는 도구이며 높은 재현성과 특이도를 갖춘 중요한 도구임을 시사한다.

Keywords

References

  1. Z. Zhang, S. He, Y. Zhong, H. Zou, L. Cai, Y. Zhang, H. Wang, "The effect of gel pads on the measurement of breast superficial lesion by shear wave elastography", Annals of Medicine, Vol. 55, No. 2, pp. 1-6, 2023. https://doi.org/10.1080/07853890.2023.2269941
  2. H. Youn, S. Kang, S. Jung. "Clinical application of shear wave elastography in patients with breast cancer", Journal of Surgical Ultrasound, Vol. 5, No. 2, pp. 33-38, 2018. https://doi.org/10.46268/jsu.2018.5.2.33
  3. Y. Yeom, "Early detection health screening for breast cancer", The Korean Institute of Electrical Engineers, Vol. 72, No. 9, pp 38-41, 2023. https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11524253
  4. J. Jeong, "The Optimization of Design for Breast Ultrasound Diagnosis System Based on Usability Engineering", Yonsei University, Master of Medicine, 2023. https://ir.ymlib.yonsei.ac.kr/handle/22282913/197075
  5. H. An, I. Im, "Comparison of Shear Wave Elastography and Pathologic Results Using BI - RADS Category for Breast Mass", Journal of the Korean Society of Radiology, Vol. 12, No. 2, pp. 217-223, 2018. https://doi.org/10.7742/jksr.2018.12.2.217
  6. H. Mun, "Validation of intra-and interobserver reproducibility of shearwave elastography using phantom", Hanyang University, Doctorate of Medicine, specializing in Radiology, 2013. http://doi.org/10.7742/jksr.2023.17.6.919
  7. E. Yang, "Conventional sonography and sonoelastographic diagnostic performances in the patients of breast biopsy", Ajou University, Master of Public Health, 2017. http://repository.ajou.ac.kr/handle/201003/16500
  8. Y. Im, "Assessment of Liver Stiffness using Color Histogram in Ultrasound Shear Wave Elastography", Cheongju University, Master of Public Health, 2020. http://www.riss.kr/link?id=T15488546
  9. J. Youk, E. Kim, "Current Trends in Breast Ultrasonography", Journal of the Korean Society of Medical Ultrasound, Vol. 31, No. 1, pp. 1-10, 2012. https://ir.ymlib.yonsei.ac.kr/handle/22282913/92370
  10. I. Woo, "Feasibility Study for the Breast Ultrasound Elastography in the Diagnosis of Breast Cancer and Assessment of the Influence of the Image Acquisition Direction", Korea University, Master of Medical Imaging Engineering, 2012. https://doi.org/10.23186/korea.000000034468.11009.0000649
  11. J. Mo, "Shear wave elastography: a systematic review and meta-analysis", Journal of the Korean Medical Association, Vol. 59, No. 7, pp. 529-535, 2016. http://doi.org/10.5124/jkma.2016.59.7.529
  12. W. Moon, J. Chang, N. Cho, "Elastography of the Breast: Imaging Techniques and Pitfalls in Interpretation", Journal of Korean Society of Ultrasound in Medicine, Vol. 30, No. 4, pp. 245-249, 2011. https://www.e-ultrasonography.org/journal/view.php?number=339
  13. J. Kim, I. Kim, C. Jeon, J. Han, "Reproducibility Evaluation of Shear Wave Elastography According to the Depth of the Simulated Lesion in breast Ultrasonography", Journal of the Korean Society of Radiology, Vol. 17, No. 6, pp. 919-927, 2023. https://doi.org/10.7742/jksr.2023.17.6.919
  14. A. Bulum, G. Ivanac, E. Divjak, I. Spoljar, M. Dominkovic, K. Bojanic, M. Lucijanic, B. Brkljacic, "Elastic Modulus and Elasticity Ratio of Malignant Breast Lesions with Shear Wave Ultrasound Elastography: Variations with Different Region of Interest and Lesion Size", Diagnotics, Vol. 11, No. 6, pp. 1-8, 2021. https://doi.org/10.3390/diagnostics11061015
  15. Speed of a transverse wave in a solid medium, From URL; https://physics.stackexchange.com/questions/454089/speed-of-a-transverse-wave-in-a-solid-medium
  16. H. Shin, E. Ko, A. Yi, "Breast Cancer Screening in Korean Woman with Dense Breast Tissue", Journal of the Korean Society of Radiology, Vol. 73, No. 5, pp. 279-286, 2015. http://doi.org/10.3348/jksr.2015.73.5.279
  17. D. Cosgrove, W. Berg, C. Dore, D. Skyba, J. Henry, J. Gay, C. Cohen-Bacrie, BE1 Study Group, "Shear wave elastography for breast masses is highly reproducible", European Radiology, Vol. 22, pp. 1023-1032, 2012. https://doi.org/10.1007/s00330-011-2340-y
  18. S. Raza, A. Odulate, EM. Ong, S. Chikarmance, CW. Harston, "Using Real-time Tissue Elastography for Breast Lesion Evaluation Our Initial Experience", Journal of Ultrasound in Medicine, Vol. 29, No. 4, pp. 551-563, 2010. https://doi.org/10.7863/jum.2010.29.4.551
  19. K. Hoyt, K. J. Parker, D. J. Rubens, "Real-Time Shear Velocity Imaging Using Sonoelastographic Techniques", In Ultrasound in Medicine & Biology, Vol. 33, No. 7, pp. 1086-1097, 2007. https://doi.org/10.1016/j.ultrasmedbio.2007.01.009
  20. N. Cho, W. Moon, J. Park, J. Cha, M. Jang, M. Seong, "Nonpalpable Breast Masses: Evaluation by US Elastography", Korean Journal of Radiology, Vol. 9, No. 2, pp. 111-118, 2008. http://doi.org/10.3348/kjr.2008.9.2.111
  21. A. Evans, P. Whelehan, K. Thomson, D. McLean, K. Brauer, C. Purdie, L. Jordan, L. Baker, A. Thompson, "Quantitative shear wave ultrasound elastography: initial experience in solid breast masses", Breast Cancer Research, Vol. 12, No. 6, pp. 1-11, 2010. https://doi.org/10.1186/bcr2787
  22. J. Youk, H. Gweon, E. Son, J. Chung, J. Kim, E. Kim, "Three-dimensional shear-wave elastography for differentiating benign and malignant breast lesions: comparison with two-dimensional shear-wave elastography", European Radiology, Vol. 23, No. 6, pp. 1519-1527, 2013. https://doi.org/10.1007/s00330-012-2736-3