• Title/Summary/Keyword: 유리 콘크리트

Search Result 414, Processing Time 0.02 seconds

Effect of Transverse Reinforcement on the Shear Friction Capacity of Concrete Interfaces with Construction Joint (시공줄눈이 있는 콘크리트 경계면의 전단마찰 내력에 대한 보강철근의 영향)

  • Hwnag, Yong-Ha;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.555-562
    • /
    • 2016
  • The objective of the present study is to evaluate the shear transfer capacity of transverse reinforcement at the concrete interfaces with smooth construction joint. The transverse reinforcing bars were classified into two groups: V-type for the arrangement perpendicular to the interface and X-type for inclined-crossing arrangement. The transverse reinforcement ratio at the interface varied from 0.0045 to 0.0135 for V-type and 0.0064 to 0.0045 for X-type. The mechanism analysis proposed for monolithic concrete interface, derived based on the upper-bound theorem of concrete plasticity, was modified to evaluate the shear friction capacity of concrete interfaces with smooth construction joint. Test results showed that the specimens with X-type reinforcement had lower amount of relative slippage at the interface and higher shear friction capacity than the companion specimens with V-type reinforcement. This observation was independent of the unit weight of concrete. The mean and standard deviation of the ratios between the experimental shear friction strength of smooth construction joints and predictions obtained from the proposed model are 1.07 and 0.14, respectively.

Compressive Strength Properties of Steam-cured High Volume GGBFS Cement Concrete (증기양생한 고로슬래그 다량치환 시멘트 콘크리트의 압축강도 특성)

  • Hong, Seong-Hyun;Kim, Hyung-Suk;Choi, Seul-Woo;Lee, Kwang-Myong;Choi, Se-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Recently, lots of researches on concrete with high volume mineral admixture such as ground granulated blast furnace slag (GGBFS) have been carried out to reduce $CO_2$. It is known that the precast concrete has an advantage of high strength at early age due to steam curing, even if concrete has high replacement level of mineral admixture. However it demands the investigation of compressive strength properties according to steam curing regimens. In this study, concretes with water-binder ratio of 32, 35% and water content of 135, 150, $165kg/m^3$ were produced to investigate compressive strength properties of high volume (60% by mass) GGBFS cement concrete according to steam curing regimens. Then steam curing was implemented with the maximum temperature of 50, $60^{\circ}C$ and steaming time of 5, 6, 7 hours. From the test results, it was found that steam curing was effective to raise early strength of high volume GGBFS cement concrete, but 28 day compressive strengths of steam cured specimens were lower than those of water cured specimens. Thus, a further study would be needed for the optimum steam curing regimens to satisfy target demolded strength and specified strength for the application of high volume GGBFS cement concrete to precast concrete members.

Analysis of the Relationship between Concrete Slab Track Life and Secondary Compression Characteristics in Soft Clay (점토의 2차 압축특성과 콘크리트궤도 수명과의 상관성 분석)

  • Lee, Sang-Cheol;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.195-203
    • /
    • 2016
  • Concrete slab track was applied to the Gyeoungbu High Speed Railroad step 2 and the Honam High Speed Railroad. Concrete slab track incurs higher construction cost and lower maintenance cost than existing gravel track. For these reasons, the use of concrete slab track has increased in Korea. The biggest problem in the use of concrete slab track is repairing damage from settlement that can occur while trains are in service. High speed railroad design standards require allowable residual settlement of concrete slab track of less than 25mm. In order to satisfy the requirement of long term stability of concrete slab track, it is necessary to manage the secondary compression settlement within the allowable residual settlement. This study is to evaluate the secondary compression settlement with the variation of the secondary compression index, thickness of soft ground, and concrete slab track life. Statistical analysis is performed to determine the probability of distribution of areas where serious problems will be caused after the concrete slab track is constructed.

Thermal Energy Capacity of Concrete Blocks Subjected to High-Temperature Thermal Cycling (열사이클을 적용한 고온 조건 콘크리트 블록의 열용량 특성)

  • Yang, In-Hwan;Park, Ji-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.571-580
    • /
    • 2020
  • In this study, an experimental study on storage media for thermal energy storage system was conducted. For thermal energy storage medium, concrete has excellent thermal and mechanical properties and also has various advantages due to its low cost. In addition, the ultra-high strength concrete reinforced by steel fibers exhibits excellent durability against exposure to high temperatures due to its high toughness and high strength characteristics. Moreover, the high thermal conductivity of steel fibers has an advantageous effect on heat storage and heat dissipation. Therefore, to investigate the temperature distribution characteristics of ultra-high-strength concrete, concrete blocks were fabricated and a heating test was performed by applying high-temperature thermal cycles. The heat transfer pipe was buried in the center of the concrete block for heat transfer by heat fluid flow. In order to explore the temperature distribution characteristics according to different shapes of the heat transfer pipe, a round pipe and a longitudinal fin pipe were used. The temperature distribution at the differnent thermal cycles were analyzed, and the thermal energy and the cumulated thermal energy over time were calculated and analyzed for comparison based on test results.

Temporary Arch Bridges Assembled by Snap-fit GFRP Decks and Bolts (첨단복합소재 데크를 볼트결합한 조립식 아치가교의 거동분석)

  • Hong, Kee-Jeung;Lee, Sung-Woo;Choi, Sung-Ho;Khum, Moon-Seoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.247-254
    • /
    • 2010
  • Due to lightweight and high durability of glass-fiber reinforced polyester (GFRP) materials, they are promising alternatives to conventional construction materials such as steel, concrete and wood. As good application examples of GFRP materials, several types of temporary arch bridges were suggested and verified by finite element analyses in our previous study where snap-fit GFRP decks were applied. In this paper, we conduct a structural performance test to verify safety and serviceability of the temporary arch bridge, where snap-fit GFRP decks are assembled by bolts. The structural problems occurred in this test are also discussed and improvement of temporary arch bridges is suggested to resolve the occurred structural problems.

Development of Temporary Arch Bridges by Using Snap-fit GFRP Composite Decks (조립식 복합소재 데크를 이용한 아치가교 개발)

  • Cho, Yong-Sang;Lee, Sung-Woo;Hong, Kee-Jeung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.217-223
    • /
    • 2008
  • Glass-fiber reinforced polyester (GFRP) composite material is a promising alternative to existing construction materials such as steel, concrete and wood due to light weight and high durability of GFRP composite material. If a temporary arch bridge is built by GFRP composite deck, rapid construction of the bridge and reuse of the GFRP composite deck are possible. In this paper, we develop a type of temporary arch bridges that can be built by easy assembling of GFRP composite decks. For this purpose, several possible types of temporary arch bridges are suggested and verified by finite element analysis.

A Fundamental Study of Ferro Copper Slag for Concrete Aggregate (동슬래그의 콘크리트용 골재 활용에 관한 기본연구)

  • Song, Tae-Hyeob;Lee, Mun-Hwan;Lee, Sea-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.35-42
    • /
    • 2003
  • To use ferro copper slag as aggregate in the construction, an evaluation upon the two kinds of ferro copper slag being produced was conducted to determine the basic physical, and mechanical properties, chemical component and environmental noxiousness. As a result of experiment, it was found that two kinds of ferro copper slag satisfies the physical and mechanical properties of aggregate, prescribed in KS F 2526, and that in the result of noxious heavy metal eruption test by single bach extraction, no eruption of noxious heavy metal was detected or the eruption was far below the reference value. And mortar test was conducted by replacing sand of 25, 50, 75, 100% and the performance level was presented upon reviewing the fluidity property and variable aspects of unit weight. The increase of strength in accordance with replacement rate of sand was found to be the below than the equivalent level compared to the testing specimens that did not use ferro copper slag, but those of 25% replacement rate was above than 0%. Thus, two kinds of ferro copper slag, produced in the domestic, were found to be possessing the enough physical properties to use as concrete aggregate assuming that used with sand and in particular, it was reviewed to be advantageous in manufacturing concrete or mortar that requires weight.

An Effect of Uplift Pressure Applied to Concrete Gravity Dam on the Stress Intensity Factor (중력식 콘크리트 댐에 작용하는 양압력이 응력확대계수에 미치는 영향)

  • Lee Young-Ho;Jang Hee-Suk;Kim Tae-Wan;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.841-850
    • /
    • 2004
  • The modeling of uplift pressure within dam, on the foundation on which it was constructed, and on the interface between the dam and foundation is a critical aspect in the analysis of concrete gravity dams, i.e. crack stability in concrete dam can correctly be predicted when uplift pressures are accurately modelled. Current models consider a uniform uplift distribution, but recent experimental results show that it varies along the crack faces and the procedures for modeling uplift pressures are well established for the traditional hand-calculation methods, but this is not the case for finite element (FE) analysis. In large structures, such as dams, because of smaller size of the fracture process zone with respect to the structure size, limited errors should occur under the assumptions of linear elastic fracture mechanics (LEFM). In this paper, the fracture behaviour of concrete gravity dams mainly subjected to uplift Pressure at the crack face was studied. Triangular type, trapezoidal type and parabolic type distribution of the uplift pressure including uniform type were considered in case of evaluating stress intensity factor by surface integral method. The effects of body forces, overtopping pressures are also considered and a parametric study of gravity dams under the assumption of LEFM is performed.

An Experimental Study on the Bonding Shear Performance Evaluation of the UHPC According to an Bonding Interface Treatment of the Construction Joint (시공이음부 계면처리방법에 따른 초고성능 콘크리트의 전단부착성능 평가에 관한 실험적 연구)

  • Jang, Hyun-O;Kim, Bo-Seok;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.237-245
    • /
    • 2016
  • Structural performance and durability of ultra high performance concrete could demonstrate optimal performance when unity was kept. Accordingly, it is necessary to involve the characteristics and quantitative surface treatment at the same time in order to retain oneness of Ultra-High-Performance Concrete(UHPC) according to construction joint occurrence. Therefore, this study derives a reasonable surface treatment method in a material's point of view through the shear adhesion performance evaluation according to the construction joints surface processing method as a part for securing the adhesion performance of the construction joints when casting UHPC. 180 MPa of required average strength was used for mix of UHPC and surface treatment method was set to totally 7 level that MN, GR-10-0, GR-20-0, GR-30-0, SH-30-5, SH-30-10. After the specimen were manufactured to a size of $150{\times}150{\times}150mm$, Direct shear test was performed to evaluate the shear adhesion strength. As a result, it was confirmed that the adhesion performance was improved when executing a surface treatment for the construction joint interface and standard of failure mode of specimen was over Type C. Also, It was considered that interface of cross section and depth of concavo-convex should be concerned.

Fundamental Performance Evaluation of Recycled Aggregate Concrete with Varying Amount of Fly Ash and Recycled Fine Aggregate (순환잔골재 및 플라이애쉬 혼입률에 따른 순환골재 콘크리트의 압축강도, 염소이온 투과 및 중성화 저항성 평가)

  • Sim Jongsung;Park Cheolwoo;Moon Il-Whan;Lee Hee-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.793-801
    • /
    • 2005
  • This study investigates fundamental properties of recycled aggregate concrete which incorporated 100% recycled coarse aggregate and various amount of recycled fine aggregate. In addition, for the purpose of the improvement of long term strength and durability, a part of cement was replaced with fly ash. Compressive strength and resistance to chloride ion penetration and carbonation were investigated. When the coarse aggregate was completely replaced with the recycled the replacement ratio of the fine aggregate with the recycled was recommended to be limited below 60% in the consideration of strength. The strength of the steam-cured specimen was very comparable to the wet-cured at 28 days. As fly ash content increased the resistance to chloride ion penetration was increased. The chloride ion penetrability based on the charge passed was found to be low at 21 days and very low at 56 days, respectively. Carbonation depth and carbonation velocity coefficient increased as the fly ash content increased and the relationship between the carbonation depth and recycled fine aggregate replacement ratio was not clear. Up to 28days, however, the measured carbonation depth was mostly less than 10mm which could be considered as low.