DOI QR코드

DOI QR Code

Compressive Strength Properties of Steam-cured High Volume GGBFS Cement Concrete

증기양생한 고로슬래그 다량치환 시멘트 콘크리트의 압축강도 특성

  • Hong, Seong-Hyun (Department of Civil, Architectural and Environmental System Engineering, Sungkyunkwan University) ;
  • Kim, Hyung-Suk (Department of Civil, Architectural and Environmental System Engineering, Sungkyunkwan University) ;
  • Choi, Seul-Woo (Department of Civil, Architectural and Environmental System Engineering, Sungkyunkwan University) ;
  • Lee, Kwang-Myong (Department of Civil, Architectural and Environmental System Engineering, Sungkyunkwan University) ;
  • Choi, Se-Jin (Department of Architectural Engineering, Wonkwang University)
  • 홍성현 (성균관대학교 건설환경시스템공학과) ;
  • 김형석 (성균관대학교 건설환경시스템공학과) ;
  • 최슬우 (성균관대학교 건설환경시스템공학과) ;
  • 이광명 (성균관대학교 건설환경시스템공학과) ;
  • 최세진 (원광대학교 건축공학과)
  • Received : 2015.02.11
  • Accepted : 2015.03.11
  • Published : 2015.03.30

Abstract

Recently, lots of researches on concrete with high volume mineral admixture such as ground granulated blast furnace slag (GGBFS) have been carried out to reduce $CO_2$. It is known that the precast concrete has an advantage of high strength at early age due to steam curing, even if concrete has high replacement level of mineral admixture. However it demands the investigation of compressive strength properties according to steam curing regimens. In this study, concretes with water-binder ratio of 32, 35% and water content of 135, 150, $165kg/m^3$ were produced to investigate compressive strength properties of high volume (60% by mass) GGBFS cement concrete according to steam curing regimens. Then steam curing was implemented with the maximum temperature of 50, $60^{\circ}C$ and steaming time of 5, 6, 7 hours. From the test results, it was found that steam curing was effective to raise early strength of high volume GGBFS cement concrete, but 28 day compressive strengths of steam cured specimens were lower than those of water cured specimens. Thus, a further study would be needed for the optimum steam curing regimens to satisfy target demolded strength and specified strength for the application of high volume GGBFS cement concrete to precast concrete members.

최근 $CO_2$ 감축을 위해 고로슬래그 미분말과 같은 혼화재의 치환율을 높이기 위한 연구가 활발히 이루어지고 있다. 프리캐스트 콘크리트의 경우 증기양생을 실시하기 때문에 혼화재의 치환율을 높여도 초기 강도 확보에 유리한 것으로 알려져 있다. 하지만 다양한 증기양생이력에 따른 압축강도 특성에 대한 연구가 요구된다. 따라서 본 연구에서는 고로슬래그 다량치환(질량비 60%) 시멘트 콘크리트의 증기양생 이력에 따른 콘크리트 압축강도 특성을 규명하기 위해 물-결합재비(W/B) 32, 35%, 단위수량 135, $150,165kg/m^3$ 수준으로 콘크리트를 제조하였다. 그리고 공시체의 최고온도(50, $60^{\circ}C$) 및 최고온도유지시간(5, 6, 7hr)을 변수로 증기양생을 실시하였다. 실험결과, 증기양생을 통해 높은 초기강도를 얻을 수 있었지만 28일 압축강도에서 강도가 저하되는 현상을 확인할 수 있었다. 따라서 고로슬래그 다량치환 시멘트 콘크리트의 프리캐스트 콘크리트 부재에의 적용을 위해서는 탈형강도 및 요구강도를 확보할 수 있는 증기양생 이력에 대한 추가적인 연구가 필요하다.

Keywords

References

  1. Barnett, S.J., Soutsos, M.N., Millard, S.G., and Bungey, J.H. (2006). "Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies." Cement and Concrete Research, 36, 434-440. https://doi.org/10.1016/j.cemconres.2005.11.002
  2. Kim, R.H., Kim, G.Y., Kim, J.H., Lee, B.K., and Cho, B.S. (2014). "Effect of Types and Replacement Ratio of Alkali Activator on Compressive Strength of Ground Granulated Blast Furnace Slag Mortar." ournal of the Korean Recycled Construction Resources Institute, 2(4), 360-366. https://doi.org/10.14190/JRCR.2014.2.4.360
  3. Kim, J.K., Moon, Y.H., Eo, S.H. and Choi, E.K. (1998). "The effect of different curing time and temperature on compressive strength of concrete." Journal of Korea Concrete Institute, 10(3), 43-152.
  4. Kwon, H.S., Kim, S.J., Gong, M.H., Paik, M.S., and Jung, S.J. (2008). "An Experimental Study on the Strength Development of High Strength Mortar by Steam Curing." Journal of Architectural Institute of Korea, 24(7), 85-92.
  5. Metha, P.K., Monteiro, P.J. (2006). Concrete: Structure, Properties, and Materials, McGraw-Hill, USA.
  6. Oh, S.H., Hong S.H., and Lee, K.M. (2014). "Autogenous Shrinkage Properties of High Strength Alkali Activated Slag Mortar." Journal of the Korean Recycled Construction Resources Institute, 2(1), 60-65. https://doi.org/10.14190/JRCR.2014.2.1.060
  7. Ramezanianpour, A.A., Khazali, M.H., and Vosoughi, P. (2013). "Effect of steam curing cycles on strength and durability of SCC : A cast study in precast concrete." Construction and Building Materials, 49, 807-813. https://doi.org/10.1016/j.conbuildmat.2013.08.040
  8. Razak, H.A., and Sajedi, F. (2011). "The effect of heat treatment on the compressive strength of cement-slag mortars." Materials and design, 32, 4618-4628. https://doi.org/10.1016/j.matdes.2011.04.038
  9. Yazici, H., Yardimci, M.Y., Yigiter, H., Aydin, S., and Turkel, S. (2010). "Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag." Cement & Concrete Composites, 32, 639-648. https://doi.org/10.1016/j.cemconcomp.2010.07.005

Cited by

  1. Structural Capacity of Water Channel Fabricated of Blast Furnace Slag Concrete vol.4, pp.4, 2016, https://doi.org/10.14190/JRCR.2016.4.4.446