• Title/Summary/Keyword: 유리수의 나눗셈

Search Result 6, Processing Time 0.025 seconds

A Study on Extension of Division Algorithm and Euclid Algorithm (나눗셈 알고리즘과 유클리드 알고리즘의 확장에 관한 연구)

  • Kim, Jin Hwan;Park, Kyosik
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.1
    • /
    • pp.17-35
    • /
    • 2013
  • The purpose of this study was to analyze the extendibility of division algorithm and Euclid algorithm for integers to algorithms for rational numbers based on word problems of fraction division. This study serviced to upgrade professional development of elementary and secondary mathematics teachers. In this paper, fractions were used as expressions of rational numbers, and they also represent rational numbers. According to discrete context and continuous context, and measurement division and partition division etc, divisibility was classified into two types; one is an abstract algebraic point of view and the other is a generalizing view which preserves division algorithms for integers. In the second view, we raised some contextual problems that can be used in school mathematics and then we discussed division algorithm, the greatest common divisor and the least common multiple, and Euclid algorithm for fractions.

  • PDF

Exploring the Issues and Improvements of the Quotient and the Reminder of the Decimal Division (소수 나눗셈의 몫과 나머지에 대한 논점과 개선 방안)

  • Lee, Hwayoung
    • Education of Primary School Mathematics
    • /
    • v.24 no.2
    • /
    • pp.103-114
    • /
    • 2021
  • In this study I recognized the problems with the use of the terms 'quotient' and 'reminder' in the division of decimal and explored ways to improve them. The prior studies and current textbooks critically analyzed because each researcher has different views on the use of the terms 'quotient' and 'reminder' because of the same view of the values in the division calculation. As a result of this study, I proposed to view the result 'q' and 'r' of division of decimals by division algorithms b=a×q+r as 'quotient' and 'reminder', and the amount equal to or smaller to q the problem context as a final 'result value' and the residual value as 'remained value'. It was also proposed that the approximate value represented by rounding the quotient should not be referred to as 'quotient'.

On Explaining Rational Numbers for Extending the Number system to Real Numbers (실수로의 수 체계 확장을 위한 유리수의 재해석에 대하여)

  • Shin, Bo-Mi
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.2
    • /
    • pp.285-298
    • /
    • 2008
  • According to the 7th curriculum, irrational numbers should be introduced using infinite decimals in 9th grade. To do so, the relation between rational numbers and decimals should be explained in 8th grade. Preceding studies remarked that middle school students could understand the relation between rational numbers and decimals through the division appropriately. From the point of view with the arithmetic handling activity, I analyzed that the integers and terminating decimals was explained as decimals with repeating 0s or 9s. And, I reviewed the equivalent relations between irrational numbers and non-repeating decimals, rational numbers and repeating decimals. Furthermore, I suggested an alternative method of introducing irrational numbers.

  • PDF

An Action Research on Instruction of Division of Fractions and Division of Decimal Numbers : Focused on Mathematical Connections (수학의 내적 연결성을 강조한 5학년 분수 나눗셈과 소수 나눗셈 수업의 실행 연구)

  • Kim, Jeong Won
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.3
    • /
    • pp.351-373
    • /
    • 2017
  • The meanings of division don't change and rather are connected from whole numbers to rational numbers. In this respect, connecting division of natural numbers, division of fractions, and division of decimal numbers could help for students to study division in meaningful ways. Against this background, the units of division of fractions and division of decimal numbers in fifth grade were redesigned in a way for students to connect meanings of division and procedures of division. The results showed that most students were able to understand the division meanings and build correct expressions. In addition, the students were able to make appropriate division situations when given only division expressions. On the other hand, some students had difficulties in understanding division situations with fractions or decimal numbers and tended to use specific procedures without applying diverse principles. This study is expected to suggest implications for how to connect division throughout mathematics in elementary school.

The Type of Fractional Quotient and Consequential Development of Children's Quotient Subconcept of Rational Numbers (분수 몫의 형태에 따른 아동들의 분수꼴 몫 개념의 발달)

  • Kim, Ah-Young
    • Journal of Educational Research in Mathematics
    • /
    • v.22 no.1
    • /
    • pp.53-68
    • /
    • 2012
  • This paper investigated the conceptual schemes four children constructed as they related division number sentences to various types of fraction: Proper fractions, improper fractions, and mixed numbers in both contextual and abstract symbolic forms. Methods followed those of the constructivist teaching experiment. Four fifth-grade students from an inner city school in the southwest United States were interviewed eight times: Pre-test clinical interview, six teaching / semi-structured interviews, and a final post-test clinical interview. Results showed that for equal sharing situations, children conceptualized division in two ways: For mixed numbers, division generated a whole number portion of quotient and a fractional portion of quotient. This provided the conceptual basis to see improper fractions as quotients. For proper fractions, they tended to see the quotient as an instance of the multiplicative structure: $a{\times}b=c$ ; $a{\div}c=\frac{1}{b}$ ; $b{\div}c=\frac{1}{a}$. Results suggest that first, facility in recall of multiplication and division fact families and understanding the multiplicative structure must be emphasized before learning fraction division. Second, to facilitate understanding of the multiplicative structure children must be fluent in representing division in the form of number sentences for equal sharing word problems. If not, their reliance on long division hampers their use of syntax and their understanding of divisor and dividend and their relation to the concepts of numerator and denominator.

  • PDF

Analysis on Ratio and Proportion Concepts: A Story of a Fourth Grader (4학년 아동의 비와 비례 개념 분석)

  • Lee Jong-Euk
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.2
    • /
    • pp.157-177
    • /
    • 2006
  • The concepts of ratio and proportion do not develop in isolation. Rather, they are part of the individual's multiplicative conceptual field, which includes other concepts such as multiplication, division, and rational numbers. The current study attempted to clarify the beginning of this development process. One fourth student, Kyungsu, was encourage to schematize his trial-and-error-based method, which was effective in solving so-called missing-value tasks. This study describes several advancements Kyungsu made during the teaching experiment and analyzes the challenges Kyungsu faced in attempting to schematize his method. Finally, the mathematical knowledge Kyungsu needed to further develop his ratio and proportion concepts is identified. The findings provide additional support for the view that the development of ratio and proportion concepts is embedded within the development of the multiplicative conceptual field.

  • PDF