• Title/Summary/Keyword: 유동 해석

검색결과 6,476건 처리시간 0.112초

축압기 유량조절용 Vortex 밸브의 유동 특성

  • 김영인;황영동;김성오;이기영;장문희
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.17-22
    • /
    • 1996
  • 차세대원자로의 안전계통 성능향상을 위하여 축압기 설계에서 채택하고 있는 피등적 유량조절 장치인 vortex 밸브의 특성을 분석하였다. 단순화된 해석모델을 이용하여 vortex chamber의 유동 pattern을 분석하였으며 vortex 밸브의 성능에 중요한 영향을 미치는 기하학적 인자들의 영향 유동모드 전환시 주유량이 공급되는 수관의 수위거동 특성을 분석하였다. 또한 3차원 모의가 가능한 FLUENT 코드를 사용하여 vortex chamber의 유동장을 해석하여 vortex 밸브의 유동특성을 분석하였다.

  • PDF

Frontal Flow Field Construction for Wall Boundary Condition Treatment and Frontal Remeshing Using Spline Curve in Injection Molding Simulation (사술성형 모사에 있어서 벽면 경계조건 처리를 위한 선단 유동장 생성기법과 spline 곡선을 이용한 선단 격자 재구성)

  • 윤재륜
    • The Korean Journal of Rheology
    • /
    • 제5권1호
    • /
    • pp.34-48
    • /
    • 1993
  • 최근 CAD/CAM의 발전과 더불어 사출성형공정은 여러분야에 폭넓게 응용되고 있 다. 사출성형공정은 크게 충전과정(filling stage), 냉각과정(cooling stage), 보압과정(packing stage)로 나누어 지는데 이중 충전과정은냉각과정과 보압과정에서 나타날 물리적인 현상과 최종 성형품의 기계적 성질에 중요한 영향을 끼치게 된다. 충전과정의 수치 해석 방법은 대 표적으로 control volume method, branching flow method, transient moving boun-dary method로 구분된다. 본 연구에서는 격자의 형태를 양호하게 형성시키고 유동선단의 형태를 개선하기위한 기법인 Spline 곡선을 이용한 선단격자 재구성(frontal remeshing using spline curve)과 수치해석에 소요되는 시간을 줄이기 위하여 벽면경계조건 처리를 위한 선단 유동 장생성(frontal flow field construction for wall boun-dary condition treatment)기법을 개발 하고 transient moving voundary method에 적용시켜 원형 평판과 인장 및 굽힘시편 그리고 두께가 변하는 사각 형상을 가진 캐비터에서의 충전과정을 수치해석하였다. 그결과 압력 분 포, 온도분포, 속도장, 유동선단의 진전형태 등이 기존에 제출된 해석결과와 비교하여 볼 때 만족스러운 수치해석결과를 보였다.

  • PDF

2D CFD for determining optimal location of wind turbine on Korean mountain (한국형 산악지형에서의 풍력발전 최적지 선정을 위한 2차원 유동분석)

  • Kim, Dae-Hyeong;Kim, Pyo-Jin;Lee, Chang-Hun;Choe, Jeong-Il
    • Proceeding of EDISON Challenge
    • /
    • 제1회(2012년)
    • /
    • pp.41-44
    • /
    • 2012
  • 본 연구에서는 풍력발전에 충분한 가능성을 가진 산악 지형을 모델링하여 유동의 흐름을 분석하였다. 실제 지형(설악산, 점봉산)에 대한 1/500 축소모형을 Gaussian 함수로 표현하였다. EDISON_CFD을 사용하여 산악지형의 난류유동을 해석하였으며, 해석결과의 신뢰성 확인을 위해 격자분해능에 따른 속도분포를 비교하였다. 산악지형에 따른 유동현상을 속도분포 및 유선함수 등에 의해 분석하였다. 또한 풍력터빈 설치 높이 기준에 의거하여 지형변화에 따른 주 유동방향 속도분포를 살펴보았다. 지형효과에 따른 유동해석결과를 기반으로 풍력 발전 가능 영역이 논의되었다.

  • PDF

Multiphysics analysis of Hydrodynamics and Electrodeposition for Rotating Disk Electrode and Rotating Cylinder Hull Cell (회전원판전극(RDE) 및 회전헐셀(RCHC)에서의 유동 및 전기도금 다중물리 해석연구)

  • Lee, Gyu-Hwan;Hwang, Yang-Jin;Im, Jae-Hong;Jeon, Sang-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.156-156
    • /
    • 2015
  • 도금 시뮬레이션의 목적은 실제 도금 상황에서의 전류밀도 및 도금두께 분포를 정확히 예측하여 최상의 품질과 최적의 공정조건을 확립하는데 있다. 제품에 부착된 도금 두께는 기하학적 배치에 의한 저항 (1차 전류밀도), 전기화학적 전하교환 반응에 의한 분극 (2차 전류밀도) 및 확산, 유동 등 도금물질의 공급에 의한 분극(3차 전류밀도)에 의해 결정이 된다. 현재까지 도금 시뮬레이션은 1차 전류밀도 예측에 대한 전자기학적 해석과 Butler-Volmer 식에 근거한 동력학적 전기화학 해석을 통해 2차 전류밀도 분포 해석만 이루어졌다. 즉, 도금 반응에 있어서 물질공급은 항상 일정하게 유지되는 것을 가정하고 해석을 하였다. 이는 3차 전류밀도 분포에 있어서 전극반응 계면에서의 유동에 의한 물질공급이 전기화학과는 다른 물리(physics) 영역이어서 이를 전기화학과 coupling 하는데 기술적으로 어렵기 때문이었다. 그러므로, 물질공급반응이 속도결정단계가 되는 고속도금이나 저농도 도금, gap, tranch, via hole, through hole 등의 도금의 경우에는 해석결과에 큰 오차를 야기하게 된다. 본 발표에서는 그동안 접근하지 못했던 전기도금 해석에 있어서 유동해석을 커플링하여 다중물리해석을 한 결과를 발표한다. 시편으로는 회전원판전극과 회전 헐셀을 이용하여 회전속도 (rpm)에 따른 전류밀도 및 도금두께 분포의 변화 거동을 예측하였다.

  • PDF

Analysis of Turbulent flow using Pressure Gradient Method (압력구배기법을 이용한 난류 유동장 해석)

  • 유근종
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제3권2호
    • /
    • pp.1-9
    • /
    • 1999
  • Applicability of the pressure gradient method which is formulated based on pressure gradient is verified against turbulent flow analysis. In the pressure gradient method, pressure gradient instead of pressure itself is obtained using continuity constraint. Since correct pressure gradient is found only when mass conservation is satisfied, pressure gradient method can reflect physics of flow field properly The pressure gradient method is formulated with semi-staggered grid system which locates each primitive variables on the same grid point but evaluates pressure gradient in-between. This grid system ensures easy programming and reflection of correct physics in analysis. For verifying applicability of this method, the pressure gradient method is applied to turbulent flow analysis with low Reynolds number $\kappa$-$\varepsilon$ model. Turbulent flows include fully developed channel flow, backward-facing step flow, and conical diffuser flow. Prediction results show that the pressure gradient method can be applied to turbulent flow analysis. However, the pressure gradient method requires somewhat long computation time. Proper way to find optimum under-relaxation factor, $\gamma$, is also need to be developed.

  • PDF

선박 프로펠러 연구 동향

  • Lee, Chang-Seop
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.2-2
    • /
    • 2009
  • 전통적으로 선박 프로펠러의 설계에 사용되는 수치해석방법을 소개하고, 점성유동장에서 작동하는 프로펠러의 해석을 포텐셜 이론을 적용해서 수행하는 방법을 소개한다. 캐비테이션 해석 등 최근의 프로펠러 주위 유동의 해석에 CFD가 적용되는 예를 보이고, 프로펠러의 성능 검증을 위해 실제 선박에서 수행되는 실험의 예를 보이고자 한다.

  • PDF

Grid Refinement Model in Lattice Boltzmann Method for Stream Function-Vorticity Formulations (유동함수-와도 관계를 이용한 격자볼츠만 방법에서의 격자 세밀화 모델)

  • Shin, Myung Seob
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제39권5호
    • /
    • pp.415-423
    • /
    • 2015
  • In this study, we present a grid refinement model in the lattice Boltzmann method (LBM) for two-dimensional incompressible fluid flow. That is, the model combines the desirable features of the lattice Boltzmann method and stream function-vorticity formulations. In order to obtain an accurate result, very fine grid (or lattice) is required near the solid boundary. Therefore, the grid refinement model is used in the lattice Boltzmann method for stream function-vorticity formulation. This approach is more efficient in that it can obtain the same accurate solution as that in single-block approach even if few lattices are used for computation. In order to validate the grid refinement approach for the stream function-vorticity formulation, the numerical simulations of lid-driven cavity flows were performed and good results were obtained.

A Comparative Study between Steady and Unsteady Solutions of NACA0012 Airfoil flow (NACA0012 에어포일 주위 유동의 정상해와 비정상해 비교 연구)

  • Chu, Yeon-Bok;Jang, Gyeong-Sik
    • Proceeding of EDISON Challenge
    • /
    • 제1회(2012년)
    • /
    • pp.121-124
    • /
    • 2012
  • 비정상 유동 해석을 수행하는데 있어서 비정상 Navier-Stokes 방정식을 적용한 결과와 정상 N-S 지배 방정식을 적용한 결과의 차이를 비교하려한다. 적용하고자 하는 비정상 유동은 대칭형 에어포일 NACA0012 에어포일 주위 유동으로 정하였으며, 이 때 에어포일 시위(chord) 길이와 자유류(free stream) 속도 기준으로 Re=100,000에 해당한다. 계산결과 비정상 지배 방정식을 적용한 경우 비정상 유동박리(flow separation)를 모사 할 수 있었으며, 평균 양력계수($C_L$)와 항력계수($C_D$)는 실험치와 비교적 잘 일치하였다. 하지만 정상 N-S 방정식을 적용했을 경우 비정상 유동을 모사하기 어려웠으며 평균양력, 항력계수도 실험치와 차이를 보였다. 이러한 결과는 비정상 유동 해석시 시간에 따라 변화하는 유동의 특성을 고려해 비정상 N-S 지배 방정식을 적용해야한다는 사실을 보이고 있다.

  • PDF

Verification of the Open Source Code, OpenFOAM to the External Flows (외부 유동 해석에 대한 오픈 소스 코드, OpenFOAM의 검증)

  • Kim, Tae-Woo;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제39권8호
    • /
    • pp.702-710
    • /
    • 2011
  • This paper aims to verify the applicability of OpenFOAM, the widely recognized open source CFD code, to external flows commonly found in aeronautical problems. To this end, several representative flow cases are selected first from subsonic to supersonic flow fields. Then, the computational results obtained from OpenFOAM are systematically compared against available data from experiments and other numerical codes. It was found that the strength and location of shock are well predicted and the effects of boundary conditions on the computed results are reviewed. Subsonic flow with massive separation is selected to validate the prediction capability of OpenFOAM. Based on the current results, the limitation and possibility of OpenFOAM was confirmed and for future study using OpenFOAM was suggested.

Study on the Measurements of Flow Field around Cambered Otter Board Using Particle Image Velocimetry (PIV를 이용한 만곡형 전개판의 유동장 계측에 관한 연구)

  • 박경현;이주희;현범수;노영학;배재현
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • 제38권1호
    • /
    • pp.43-57
    • /
    • 2002
  • This paper introduces an analysis method to predicting the flow characteristic of flow field around otter board In order to develope a high performance model. In this experiment, it is used a numerical analysis of flow field through CFD(Computational Fluid Dynamic), PIV method in which quantitative, qualitative evaluation is possible. In this experiment, it is used PIV method with flow filed image around otter board in order to analysis of flow characteristic. The result compared flow pattern with analysis result through CFD and also measurement result of lift and drag force coefficient carried out in CWC(Circulating Water Channel). The numerical analysis result is matched well with experiment result of PIV in the research and it is able to verify In the physical aspect. The result is as follows ; (1) It was carried out visibility experiment using laser light sheet, and picture analysis through PIV method in order to analysis fluid field of otter-board. As a result, the tendency of qualitative fluid movement only through the fluid particle's flow could be known. (2) Since PIV analysis result is quantitative, this can be seen in velocity vector distributions, instantaneous streamline contour, and average vorticity distributions through various post processing method. As a result, the change of flow field could be confirmed. (3) At angle of attack 24$^{\circ}$ where It Is shown maximum spreading force coefficient, the analysis result of CFD and PIV had very similar flow pattern. In both case, at the otter-board post edge a little boundary layer separation was seen, but, generally they had a good flow (4) As the result of post processing with velocity vector distributions, instantaneous streamline contour and average vorticity distributions by PIV, boundary layer separation phenomenon started to happen from angle of attack 24$^{\circ}$, and from over angle of attack 28$^{\circ}$, it happen at leading edge side with the width enlarged.