• Title/Summary/Keyword: 유동 및 구조해석

Search Result 470, Processing Time 0.027 seconds

Thermal Fluid Flow and Deformation Analysis of Medium Commercial Vehicle Ventilated Brake Disc in Braking (중형 상용차 통풍형 브레이크 디스크의 제동 시 열 유동 및 변형 해석)

  • Kang, Chaeuk;Choi, Gyoojae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.63-69
    • /
    • 2014
  • Domestic automobile companies have adopted drum type brake system for commercial vehicles. However recently those companies have been applying disc-brake system to solve vehicle control-instability and inefficient heat discharge performance of conventional drum brake system for a medium commercial vehicle. Because the kinetic energy of a running commercial vehicle is relatively high, the brake system should discharge lots of heat energy while braking. A ventilated type brake disc has been used to increase heat discharge performance of a brake system. The vent structure of a disc highly affects cooling efficiency. This paper compares thermal characteristics of three types of vent structure in JASO C421 braking condition. It is found that the slant bend type disc has the lowest temperature and thermal stress distributions in the braking condition.

Flow and Scour Analysis Around Monopole of Fixed Offshore Platform Using Method that Couples Computational Fluid Dynamics and Discrete Element Method (CFD-DEM 연계기법을 활용한 고정식 해양구조물의 모노파일 주위 유동 및 세굴해석)

  • Song, Seongjin;Jeon, Wooyoung;Park, Sunho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.245-251
    • /
    • 2019
  • When an offshore foundation is exposed to waves and currents, local scour could develop around a pile and even lead to structural failure. Therefore, understanding and predicting the scour due to sediment transport around foundations are important in the engineering design. In this study, the flow and scour around a monopole foundation exposed to a current were investigated using a method that coupled the computational fluid dynamics (CFD) and discrete element method (DEM). The open source computation fluid dynamics library OpenFOAM and a sediment transport library were coupled in the OpenFOAM platform. The incipient motion of the particle was validated. The flow fields and sediment transport around the monopole were simulated. The scour depth development was simulated and compared with existing experimental data. For the upstream scour hole, the equilibrium scour depth could be reproduced qualitatively, and it was underestimated by about 23%.

Simulations of Changes in Wind Field Over Mountainous Terrains Using WRF and ENVI-met Numerical Models (WRF와 ENVI-met 수치 모델을 이용한 산악지형의 바람장 변화 모사)

  • Won, Myoungsoo;Han, Seonho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.1
    • /
    • pp.17-25
    • /
    • 2013
  • In this paper we interpreted the changes in wind field over complex mountainous terrains. The results of our study can be applied for predicting the direction of fire spread and for establishing strategies for fire prevention. The study area is bounded by $12{\times}12$ km domains of the Samcheok's long-term ecological research (LTER) site located in the east coast, in which a large-fire had occurred from 7 to 13 April 2000. Because of the area's complex topography, we compared the result of the Weather Research and Forecasting (WRF) mesoscale model with those observed by four automated weather stations. The WRF simulation overestimated the wind speed by 5 to 8 m/s (~200%) in comparison with those from four automated weather stations. The wind directions observed by the AWSs were from various directions whereas those from WRF model were mostly west wind at all stations. Overall, the simulations by the WRF mesoscale models were not appropriate for the estimation of microscale wind fields over complex mountainous areas. To overcome such inadequacy of reproducing the wind fields, we employed the ENVI-met model over Samcheok's LTER site. In order to test the model's sensitivity with the terrain effects, experimental simulations were conducted with various initial conditions. The simulation results of the ENVI-met model showed a reasonable agreement in wind speeds (about 70% accuracy) with those of the four AWSs. Also, that the variations in wind directions agreed reasonably well with changes in terrain effect. We concluded that the ENVI-met model is more appropriate in representing the microscale wind field over complex mountain terrains, which is required to predict fire spread and to establish strategies for forest fire prevention.

Nano-Powder 제조를 위한 RF Thermal Plasma Torch System 개발 및 Nano-Si 특성 연구

  • Song, Seok-Gyun;Son, Byeong-Gu;Kim, Byeong-Hun;Lee, Mun-Won;Sin, Myeong-Seon;Choe, Seon-Yong;Kim, Seong-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.179-179
    • /
    • 2012
  • 국내에는 나노 분말 제조를 위한 RF 열플라즈마 시스템 제조 기술이 확보되어 있지 않고, 또한 나노 파우더 제조를 위한 공정 기술 역시 외국 업체에 전적으로 의존하고 있다. 본 연구에서는 나노 분말 제조를 위한 RF 열 플라즈마 토치 시스템 개발과 고품질의 나노 파우더 합성 공정 기술을 확립하여 필요 기관에 제공하는데 있다. 80 kW RF Plasma torch system의 설계 및 제작을 위해 플라즈마 Simulator인 CFD-ACE+를 이용하여 플라즈마 토치 및 반응로 내의 온도 분포, 유체 유동, 열전달 등의 해석을 통해 플라즈마 토치 및 반응로의 반경 및 길이, 구조의 설계 값을 도출하여 반응로를 설계하여 RF 파워, RF 플라즈마 토치(Torch), 반응기(Reactor), 사이클론(Cyclone), 포집부(Collector), 열교환기 및 진공배기 시스템으로 구성하였다. Si 나노 소재의 경우, 이차전지 음극재에 적용이 가능한 대표적인 소재로서 높음 비용량과 충/방전시 부피팽창을 감소시킬 수 있어 이차전지의 고용량 구현을 위해서는 가장 중요한 소재중 하나로 많은 관심 재료로 평가 받고 있다. 따라서 본 연구에서는 상용화된 Si 원료 powder를 사용하여 고상 분체 공급 장치를 통하여 고온의 플라즈마를 통과시켜 기상화 및 결정화과정을 통해 Si 나노분말을 제조하였다. 공정 변수로서 공정압력 및 플라즈마 power, Gas의 변화량에 따른 나노 분말의 제조 특성에 대한 실험을 진행한 후 제조된 나노 분말을 비표면적측정(BET) 및 SEM 측정 결과 분석을 통하여 시스템 특성을 파악하였으며 제조된 Si 나노 파우더는 이차전지 음극재로서 770 mAh/g의 용량과 93%@50 cycle 수준의 유지율을 나타내었다.

  • PDF

Recent Research & Development Trend on Friction Stir Welding and Friction Stir Processing (마찰교반용접(FSW) 및 마찰교반처리(FSP)의 최신 연구개발 동향)

  • Lee, Kwang-Jin
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.26-29
    • /
    • 2013
  • The latest research & development trend on friction stir welding and friction stir processing technologies presented in the international symposium, 'Friction Stir Welding & Processing VII'. Papers and presentations about high temperature materials such as advanced high strength steel, stainless steel and titanum alloy shoot up this year. Papers on modeling of metal flow and control of process parameters also increased. The FSP technologies for manufacturing of carbon materials reinforced metal matrix composites were reported, too.

Experimental Study on Dynamic Behavior of a Titanium Specimen Using the Thermal-Acoustic Fatigue Apparatus (열음향 피로 시험 장치를 이용한 티타늄 시편의 동적 거동에 관한 실험적 연구)

  • Go, Eun-Su;Kim, Mun-Guk;Moon, Young-Sun;Kim, In-Gul;Park, Jae-Sang;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.127-134
    • /
    • 2020
  • High supersonic aircraft are exposed to high temperature environments by aerodynamic heating during supersonic flight. Thermal protection system structures such as double-panel structures are used on the skin of the fuselage and wings to prevent the transfer of high heat into the interior of an aircraft. The thin-walled double-panel skin can be exposed to acoustic loads by supersonic aircraft's high power engine noise and jet flow noise, which can cause sonic fatigue damage. Therefore, it is necessary to examine the behavior of supersonic aircraft skin structure under thermal-acoustic load and to predict fatigue life. In this paper, we designed and fabricated thermal-acoustic test equipment to simulate thermal-acoustic load. Thermal-acoustic testing of the titanium specimen under thermal-acoustic load was performed. The analytical model was verified by comparing the thermal-acoustic test results with the finite element analysis results.

Numerical Analysis of Groundwater Flow through Fractured Rock Mass by Tunneling in a Mountainous Area (산악 지역 내 터널 굴착 시 단열 암반 내 지하수 유동 분석)

  • Kim, Hyoung-Soo;Lee, Ju-Hyun;Ahn, Ju-Hee;Ahn, Gyu-Cheon;Yoon, Woon-Sang
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.281-287
    • /
    • 2006
  • Intake of groundwater by tunneling in a mountainous area mostly results from groundwater flow through fractured parts of total rock mass. For reasonable analysis of this phenomenon the representative joint groups 1, 2, and 3 have been selected by previous investigations, geological/geophysical field tests and boring works. Three dimensional fractures were generated by the FracMan and MAFIC which is a three dimensional finite element model has been used to analyse a groundwater flow through fractured media. Monte Carlo simulation was applied to reduce the uncertainty of this study. The numerical results showed that the average and deviation of amounts of groundwater intaked into tunnel per unit length were $5.40{\times}10^{-1}$ and $3.04{\times}10^{-1}m^3/min/km$. It is concluded that tunnel would be stable on impact of groundwater environment by tunneling because of the lower value than $2.00{\sim}3.00m^3/min/km$ as previous and present standard on the application of tunnel construction.

Study on copper end-tab shape for maximum heat discharging performance (방열 성능 향상을 위한 구리 엔드 탭의 최적형상 연구)

  • Choi, Yeou-Myeong;Choi, Yoon-Hwan;Cho, Sang-Myung;Park, Jung-Hyun;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • When implementing butt joint welding of two plates, it is useful to attach end-tabs made of a metal with high heat conductivity (e.g., copper) at the front and back sides of the welded plates to prevent the bead from rolling down and prevent defects that may occur at the tips of the weld zone. In this study, the fin shape, which is known to have good heat discharging characteristics by natural convection, has been applied to enhance the cooling performance of the end-tab. From both experiment and numerical analysis, it was confirmed that end-tabs with fin-shaped holes have better heat discharging performance than end-tabs without holes. Through thermal and fluid flow analysis, the cooling rates of end-tabs with different hole shapes were estimated in order to figure out characteristics of shape factor that are important for the heat discharging performance. As a result, we found that the structure including vertical fins with optimal fin gap was the best-performing shape.

An Experimental and Numerical Study on the Fracture Behavior of Air conditioner Impellers (에어컨 임펠러의 파손 거동에 관한 실험 및 수치적 연구)

  • Koh, Byung-Kab;Lee, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3533-3539
    • /
    • 2009
  • An air conditioner impeller has been used to suck the warm air and to blow the chilled air by the centrifugal force induced from the rotation of it. To check the possibility of the fracture due to resonance, both numerical and experimental approach was carried out. For the structural analysis, the commercial code ANSYS based on the Finite Element Method was employed. The possibility of the fracture is the resonance between the natural frequency of impeller and characteristic frequency due to the aerodynamic forces. Experiment was carried out to see the natural frequency and numerical analysis based on the Vortex Element Method is performed to get the characteristic frequency. Comparing the natural frequencies that are calculated as described, we believe that resonance occurs.

Application of CAE in Injection Molding Process of Automobile Part (컴퓨터지원공학(CAE)을 활용한 자동차 부품 개선)

  • Cho, Junghwan;Chang, Woojin;Park, Young Hoon;Choe, Soonja
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.407-414
    • /
    • 2007
  • Using the MPI (Moldflow Plastics Insight) software from Moldflow Co., the optimum conditions for producing the upper part of the automobile air cleaner were obtained for 20% talc filled polypropylene (PP). The analysis was carried out to solve the cracking problem between upper and lower parts and the improved process was proposed using the flow balance. The comparative results between the conventional process, CASE-1, with one-pin gate and the new process (CASE-2) comprising two-pin gate system are the followings. In the case of CASE-2, the shorter filling time and reduced cycle time induced an improved production and processibility. In addition, the orientation and volumetric shrinkage are similar to those observed in the lower part, but the assembly, deformation, and physical characteristics are enhanced. The problem induced by the CASE-1 did not originate from the residual stress, but from the difference in the size of the upper part air cleaner after shrinkage. Thus, the orientation problem was expected to improve by optimizing the gate structure.