Browse > Article

Application of CAE in Injection Molding Process of Automobile Part  

Cho, Junghwan (Department Chemical Engineering, Inha University)
Chang, Woojin (Department Chemical Engineering, Inha University)
Park, Young Hoon (Department of Polymer Science and Engineering, Suncheon National University)
Choe, Soonja (Department Chemical Engineering, Inha University)
Publication Information
Applied Chemistry for Engineering / v.18, no.5, 2007 , pp. 407-414 More about this Journal
Abstract
Using the MPI (Moldflow Plastics Insight) software from Moldflow Co., the optimum conditions for producing the upper part of the automobile air cleaner were obtained for 20% talc filled polypropylene (PP). The analysis was carried out to solve the cracking problem between upper and lower parts and the improved process was proposed using the flow balance. The comparative results between the conventional process, CASE-1, with one-pin gate and the new process (CASE-2) comprising two-pin gate system are the followings. In the case of CASE-2, the shorter filling time and reduced cycle time induced an improved production and processibility. In addition, the orientation and volumetric shrinkage are similar to those observed in the lower part, but the assembly, deformation, and physical characteristics are enhanced. The problem induced by the CASE-1 did not originate from the residual stress, but from the difference in the size of the upper part air cleaner after shrinkage. Thus, the orientation problem was expected to improve by optimizing the gate structure.
Keywords
CAE; upper part of air cleaner; flow balance; polypropylene; talc;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 R. S. Spencer and G. D. Gilmore, J. Appl. Phy., 21, 523 (1950)   DOI
2 Z. Tadmor, E. Broyer, and C. Gutfinger, Polym. Eng. Sci., 14, 660 (1974)   DOI
3 W. Dietz, J. L. White, and E. S. Clark, Polym. Eng. Sci., 18, 273 (1978)   DOI   ScienceOn
4 K. K. Wang, S. F. Shen, C. Cohen, C. A. Hieber, and A. I. Isayev, CIMP Progress Report, 10, 130 (1984)
5 M. R. Kamal, and S. Kenig, Polym. Eng. Sci., 12, 294 (1972)   DOI
6 K. K. Wang, S. F. Shen, J. F. Stevenson, and C. A. Hieber, CIMP Progress Report., 9 (1977)
7 M. R. Kamal and P. C. Lafleur, Polym. Eng. Sci., 26, 102 (1986)
8 F. H. Moy and M. R. Kamal, Polym. Eng. Sci., 20, 957 (1980)   DOI   ScienceOn
9 B. Kim, W. Jang, J. Kim, Y. Park, B. H. Lee, and S. Choe, Korean J. Chem. Eng., 41, No. 5, 577 (2003)
10 K. K. Wang, S. F. Shen, C. Cohen, C. A. Hieber, R. C. Ricketson, V. W. Wang, and S. Emerman, CIMP Progress Report, 12 (1986)
11 R. L. Ballman, T. Shusman, and H. L. Toor, Ind. Eng. Chem., 51, 847 (1959)   DOI
12 K. K. Wang, S. F. Shen, C. Cohen, and C. A. Hieber, CIMP Progress Report, 13 (1987)
13 M. R. Kamal, Y. Kuo, and P. H. Doan, Polym. Eng. Sci.,, 15, 863 (1975)   DOI
14 T. S. Chaung and M. E. Ryan, Polym. Eng. Sci., 21, 271 (1981)   DOI   ScienceOn
15 D. O. Kazmer and R. G. Speight, J. Injection Molding Tech, 1, 81 (1997)
16 H. A. Lord and G. Williams, Polym. Eng. Sci., 15, 569 (1975)   DOI
17 B. Kim, W. Jang, J. Kim, C. W. Chung, Y. Park, B. H. Lee, and S. Choe, Polymer, 25, 6, 855 (2001)
18 R. S. Spencer and G. D. Gilmore, J. Colloid Sci., 6,118 (1950)   DOI   ScienceOn
19 Z. Tadmor and C. G. Gogos, Principles of Polymer Processing, John Wiley & Sons, New York (1979)
20 M. R. Kamal, and S. Kenig, Polym. Eng. Sci., 12, 302 (1972)   DOI
21 D. H. Harry and R. G. Parrot, Polym. Eng. Sci., 10, 209 (1970)   DOI